Suppr超能文献

十字花科蔬菜异硫氰酸盐对膀胱癌中组蛋白乙酰化和组蛋白磷酸化的影响。

The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer.

作者信息

Abbaoui Besma, Telu Kelly H, Lucas Christopher R, Thomas-Ahner Jennifer M, Schwartz Steven J, Clinton Steven K, Freitas Michael A, Mortazavi Amir

机构信息

The Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.

Department of Chemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.

出版信息

J Proteomics. 2017 Mar 6;156:94-103. doi: 10.1016/j.jprot.2017.01.013. Epub 2017 Jan 27.

Abstract

UNLABELLED

Cruciferous vegetable intake is associated with reduced risk of bladder cancer, yet mechanisms remain unclear. Cruciferous vegetable isothiocyanates (ITCs), namely sulforaphane (SFN) and erucin (ECN), significantly inhibit histone deacetylase (HDAC) activity in human bladder cancer cells representing superficial to invasive biology (59-83% inhibition with 20μM, 48h treatment), and in bladder cancer xenografts (59±3% ECN inhibition). Individual HDACs inhibited by SFN and ECN include HDACs 1, 2, 4 and 6. Interestingly, global acetylation status of histones H3 or H4 remain unaltered. The interplay between HDAC inhibition and modest modulation of AcH3 and AcH4 status is partially explained by decreased histone acetyl transferase activity (48.8±5.3%). In contrast, a significant decrease in phosphorylation status of all isoforms of histone H1 was observed, concomitant with increased phosphatase PP1β and PP2A activity. Together, these findings suggest that ITCs modulate histone status via HDAC inhibition and phosphatase enhancement. This allows for reduced levels of histone H1 phosphorylation, a marker correlated with human bladder cancer progression. Therefore, ITC-mediated inhibition of histone H1 phosphorylation presents a novel direction of research in elucidating epidemiological relationships and supports future food-based prevention strategies.

SIGNIFICANCE

Collectively, our findings suggest that the cruciferous vegetable isothiocyanates: sulforaphane (SFN) and erucin (ECN), impact histones status in bladder cancer cells by modulating specific HDACs and HATs, and enhancing phosphatase activity, resulting in reduction of histone H1 phosphorylation. These findings are significant due to the fact that our previous work positively correlated histone H1 phosphorylation with bladder cancer carcinogenesis and progression. Therefore, we propose that SFN and ECN may inhibit bladder carcinogenesis via epigenetic modulation of gene expression associated with histone H1 phosphorylation. These efforts may elucidate biomarkers useful in epidemiologic studies related to cruciferous vegetable intake and cancer risk or provide intermediate biomarkers for food-based clinical intervention studies in high-risk cohorts.

摘要

未标记

食用十字花科蔬菜与膀胱癌风险降低相关,但机制尚不清楚。十字花科蔬菜异硫氰酸盐(ITCs),即萝卜硫素(SFN)和山嵛菜黄素(ECN),可显著抑制人膀胱癌细胞中组蛋白脱乙酰酶(HDAC)的活性,这些膀胱癌细胞代表了从表浅到侵袭性的生物学特性(20μM处理48小时,抑制率为59 - 83%),在膀胱癌异种移植模型中也有抑制作用(ECN抑制率为59±3%)。被SFN和ECN抑制的单个HDAC包括HDAC 1、2、4和6。有趣的是,组蛋白H3或H4的整体乙酰化状态保持不变。HDAC抑制与AcH3和AcH4状态的适度调节之间的相互作用部分可通过组蛋白乙酰转移酶活性降低(48.8±5.3%)来解释。相反,观察到组蛋白H1所有亚型的磷酸化状态显著降低,同时磷酸酶PP1β和PP2A活性增加。总之,这些发现表明ITCs通过抑制HDAC和增强磷酸酶活性来调节组蛋白状态。这使得组蛋白H1磷酸化水平降低,而组蛋白H1磷酸化是与人类膀胱癌进展相关的一个标志物。因此,ITC介导的组蛋白H1磷酸化抑制为阐明流行病学关系提供了一个新的研究方向,并支持未来基于食物的预防策略。

意义

总体而言,我们的研究结果表明,十字花科蔬菜异硫氰酸盐:萝卜硫素(SFN)和山嵛菜黄素(ECN),通过调节特定的HDAC和HAT,并增强磷酸酶活性,影响膀胱癌细胞中的组蛋白状态,从而导致组蛋白H1磷酸化减少。这些发现具有重要意义,因为我们之前的工作已证实组蛋白H1磷酸化与膀胱癌的发生和进展呈正相关。因此,我们提出SFN和ECN可能通过对与组蛋白H1磷酸化相关的基因表达进行表观遗传调控来抑制膀胱癌的发生。这些研究成果可能有助于阐明在与十字花科蔬菜摄入和癌症风险相关的流行病学研究中有用的生物标志物,或为高危人群基于食物的临床干预研究提供中间生物标志物。

相似文献

1
The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer.
J Proteomics. 2017 Mar 6;156:94-103. doi: 10.1016/j.jprot.2017.01.013. Epub 2017 Jan 27.
2
Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion.
Mol Nutr Food Res. 2012 Nov;56(11):1675-87. doi: 10.1002/mnfr.201200276. Epub 2012 Oct 5.
3
Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention.
Mol Nutr Food Res. 2018 Sep;62(18):e1800079. doi: 10.1002/mnfr.201800079. Epub 2018 Aug 29.
5
Heterocyclic Analogs of Sulforaphane Trigger DNA Damage and Impede DNA Repair in Colon Cancer Cells: Interplay of HATs and HDACs.
Mol Nutr Food Res. 2018 Sep;62(18):e1800228. doi: 10.1002/mnfr.201800228. Epub 2018 Jul 19.
6
Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.
Biochem Cell Biol. 2016 Feb;94(1):71-81. doi: 10.1139/bcb-2015-0038. Epub 2015 Sep 9.
7
Dietary histone deacetylase inhibitors: from cells to mice to man.
Semin Cancer Biol. 2007 Oct;17(5):363-9. doi: 10.1016/j.semcancer.2007.04.001. Epub 2007 May 5.
8
Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through downregulation of HDAC activity.
Biomed Pharmacother. 2016 Mar;78:74-80. doi: 10.1016/j.biopha.2015.11.007. Epub 2016 Jan 14.
9
Epigenetic impact of dietary isothiocyanates in cancer chemoprevention.
Curr Opin Clin Nutr Metab Care. 2013 Jul;16(4):405-10. doi: 10.1097/MCO.0b013e328362014e.

引用本文的文献

2
Sulforaphane inhibits histone deacetylase causing cell cycle arrest and apoptosis in oral squamous carcinoma cells.
Med J Armed Forces India. 2024 Jul-Aug;80(4):412-419. doi: 10.1016/j.mjafi.2022.03.005. Epub 2022 Jun 10.
4
Research progress and applications of epigenetic biomarkers in cancer.
Front Pharmacol. 2024 Apr 12;15:1308309. doi: 10.3389/fphar.2024.1308309. eCollection 2024.
6
Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed?
Nat Prod Bioprospect. 2023 Oct 16;13(1):39. doi: 10.1007/s13659-023-00400-4.
7
Sulforaphane and bladder cancer: a potential novel antitumor compound.
Front Pharmacol. 2023 Sep 15;14:1254236. doi: 10.3389/fphar.2023.1254236. eCollection 2023.
8
Anticancer properties of sulforaphane: current insights at the molecular level.
Front Oncol. 2023 Jun 16;13:1168321. doi: 10.3389/fonc.2023.1168321. eCollection 2023.
9
Mechanistic review of sulforaphane as a chemoprotective agent in bladder cancer.
Am J Clin Exp Urol. 2023 Apr 15;11(2):103-120. eCollection 2023.

本文引用的文献

1
The Evolution of Epigenetics: From Prokaryotes to Humans and Its Biological Consequences.
Genet Epigenet. 2016 Aug 3;8:25-36. doi: 10.4137/GEG.S31863. eCollection 2016.
2
Epigenetics and nutrition-related epidemics of metabolic diseases: Current perspectives and challenges.
Food Chem Toxicol. 2016 Oct;96:191-204. doi: 10.1016/j.fct.2016.08.006. Epub 2016 Aug 5.
3
Biomarkers in bladder cancer: A metabolomic approach using in vitro and ex vivo model systems.
Int J Cancer. 2016 Jul 15;139(2):256-68. doi: 10.1002/ijc.30016. Epub 2016 Feb 23.
4
Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.
ACS Chem Biol. 2016 Mar 18;11(3):782-91. doi: 10.1021/acschembio.5b00816. Epub 2016 Feb 10.
5
Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression.
Trends Plant Sci. 2015 Oct;20(10):614-621. doi: 10.1016/j.tplants.2015.07.005.
7
Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer.
Curr Pharmacol Rep. 2015 Aug;1(4):272-282. doi: 10.1007/s40495-015-0024-z.
9
Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention.
Curr Pharmacol Rep. 2015 Apr 1;1(2):102-111. doi: 10.1007/s40495-014-0002-x.
10
Impact of Epigenetic Dietary Components on Cancer through Histone Modifications.
Curr Med Chem. 2015;22(17):2051-64. doi: 10.2174/0929867322666150420102641.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验