Suppr超能文献

利用基于人群的先验数据有效开发放射治疗自主治疗计划策略。

Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data.

作者信息

Wang Huan, Dong Peng, Liu Hongcheng, Xing Lei

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA.

出版信息

Med Phys. 2017 Feb;44(2):389-396. doi: 10.1002/mp.12058. Epub 2017 Jan 30.

Abstract

PURPOSE

Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow.

METHOD

Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases.

RESULTS

An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments.

CONCLUSIONS

Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to significantly improve the radiation therapy workflow.

摘要

目的

当前的治疗计划制定仍然是一个成本高昂且劳动密集型的过程,需要对系统参数(如权重因子和处方)进行多次反复试验调整。本研究的目的是开发一种自主治疗计划策略,在临床实际的治疗计划平台中有效利用先验知识,以促进放射治疗工作流程。

方法

我们的技术由三个主要部分组成:(i)临床治疗计划系统(TPS);(ii)使用一组先前治疗计划构建的决策函数公式;(iii)一个计划评估器或决策函数以及一个独立于临床TPS的外环优化,以评估TPS生成的计划并推动搜索朝着优化决策函数的解决方案进行。微软(MS)Visual Studio编码用户界面被用于记录一些常见的计划者与TPS的交互作为子程序,用于查询和与TPS进行交互。这些子程序在外环优化程序中被调用,以通过解空间迭代地导航计划选择过程。通过使用临床前列腺癌和头颈癌病例展示了该方法的实用性。

结果

开发了一种有效利用一组先前治疗计划的自主治疗计划技术,以在商业TPS平台中自动操纵临床治疗计划过程。该过程模仿了人类计划者的决策过程,并自动提供了一个临床合理的治疗计划,从而减少/消除了治疗计划中繁琐的手动反复试验。结果发现,使用该方法生成的前列腺癌和头颈癌治疗计划与用于患者实际治疗的计划相比具有优势。

结论

在一组先前治疗计划的指导下,临床逆向治疗计划过程可以有效地自动化。该方法有可能显著改善放射治疗工作流程。

相似文献

3
A plan template-based automation solution using a commercial treatment planning system.
J Appl Clin Med Phys. 2020 May;21(5):13-25. doi: 10.1002/acm2.12848. Epub 2020 Mar 16.
4
Automatizing a nonscripting TPS for optimizing clinical workflow and reoptimizing IMRT/VMAT plans.
Med Dosim. 2019;44(4):409-414. doi: 10.1016/j.meddos.2019.02.006. Epub 2019 Apr 2.
7
Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.
Phys Med. 2017 Jan;33:136-145. doi: 10.1016/j.ejmp.2016.12.021. Epub 2017 Jan 12.
8
Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures.
Phys Med Biol. 2007 Jul 7;52(13):3817-36. doi: 10.1088/0031-9155/52/13/011. Epub 2007 May 31.
9
Vector-model-supported approach in prostate plan optimization.
Med Dosim. 2017;42(2):79-84. doi: 10.1016/j.meddos.2017.01.001. Epub 2017 Mar 18.
10
Toward truly optimal IMRT dose distribution: inverse planning with voxel-specific penalty.
Technol Cancer Res Treat. 2010 Dec;9(6):629-36. doi: 10.1177/153303461000900611.

引用本文的文献

1
Artificial intelligence-based predictive model for guidance on treatment strategy selection in oral and maxillofacial surgery.
Heliyon. 2024 Aug 2;10(15):e35742. doi: 10.1016/j.heliyon.2024.e35742. eCollection 2024 Aug 15.
3
Using feasibility dose-volume histograms to reduce intercampus plan quality variability for head-and-neck cancer.
J Appl Clin Med Phys. 2023 Jan;24(1):e13749. doi: 10.1002/acm2.13749. Epub 2022 Aug 12.
6
Dosimetric Quality of Online Adapted Pancreatic Cancer Treatment Plans on an MRI-Guided Radiation Therapy System.
Adv Radiat Oncol. 2021 Mar 3;6(3):100682. doi: 10.1016/j.adro.2021.100682. eCollection 2021 May-Jun.
7
Real-time interactive planning for radiotherapy of head and neck cancer with volumetric modulated arc therapy.
Phys Imaging Radiat Oncol. 2019 Apr 4;9:83-88. doi: 10.1016/j.phro.2019.03.002. eCollection 2019 Jan.
9
Clinical Experience of Automated SBRT Paraspinal and Other Metastatic Tumor Planning With Constrained Hierarchical Optimization.
Adv Radiat Oncol. 2019 Dec 3;5(5):1042-1050. doi: 10.1016/j.adro.2019.11.005. eCollection 2020 Sep-Oct.

本文引用的文献

1
Optimization of rotational arc station parameter optimized radiation therapy.
Med Phys. 2016 Sep;43(9):4973. doi: 10.1118/1.4960000.
3
Automatic learning-based beam angle selection for thoracic IMRT.
Med Phys. 2015 Apr;42(4):1992-2005. doi: 10.1118/1.4908000.
4
Models for predicting objective function weights in prostate cancer IMRT.
Med Phys. 2015 Apr;42(4):1586-95. doi: 10.1118/1.4914140.
5
Optimization approaches to volumetric modulated arc therapy planning.
Med Phys. 2015 Mar;42(3):1367-77. doi: 10.1118/1.4908224.
7
Simultaneous beam sampling and aperture shape optimization for SPORT.
Med Phys. 2015 Feb;42(2):1012-22. doi: 10.1118/1.4906253.
9
Automation and intensity modulated radiation therapy for individualized high-quality tangent breast treatment plans.
Int J Radiat Oncol Biol Phys. 2014 Nov 1;90(3):688-95. doi: 10.1016/j.ijrobp.2014.06.056. Epub 2014 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验