Suppr超能文献

用于强度调制放射治疗优化算法中权重因子选择的粒子群优化器。

Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

作者信息

Yang Jie, Zhang Pengcheng, Zhang Liyuan, Shu Huazhong, Li Baosheng, Gui Zhiguo

机构信息

National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, Shanxi 030051, China; School of Medicine Management, Shanxi University of TCM, Taiyuan, Shanxi 030619, China.

National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, Shanxi 030051, China.

出版信息

Phys Med. 2017 Jan;33:136-145. doi: 10.1016/j.ejmp.2016.12.021. Epub 2017 Jan 12.

Abstract

In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human planner intervention. A comparison of the results with the optimized solution obtained using a similar optimization model but with human planner intervention revealed that the proposed algorithm produced optimized plans superior to that developed using the manual plan. The proposed algorithm can generate admissible solutions within reasonable computational times and can be used to develop fully automated IMRT treatment planning methods, thus reducing human planners' workloads during iterative processes.

摘要

在调强放射治疗(IMRT)的逆向治疗计划中,目标函数通常是加权子分数之和,其中权重表示子分数的重要性。为了获得高质量的治疗计划,计划者使用试错程序手动调整目标权重,直到达到可接受的计划。在这项工作中,研究了一种新的粒子群优化(PSO)方法,该方法可以自动调整权重因子,以克服手动调整的需求,从而减少人类计划者的工作量,并有助于全自动计划过程的发展。所提出的优化方法包括三个步骤。(i)首先,在搜索空间中随机初始化一群权重因子(即粒子),其中每个粒子对应一个全局目标函数。(ii)然后,使用计划优化求解器为每个粒子获得最优解,并根据这些结果计算用于确定粒子位置和粒子群全局位置的评估函数值。(iii)接下来,根据粒子的位置和粒子群全局位置更新权重因子。步骤(ii)与步骤(iii)交替执行,直到达到终止条件。在该方法中,评估函数是剂量体积直方图上几个关键点的组合。此外,采用了一种扰动策略——交叉和变异算子混合方法——来增强群体多样性,并将两个参数应用于评估函数以提高算法的灵活性。在本研究中,所提出的方法用于为10例前列腺癌病例制定涉及五条不等间距6MV光子束的IMRT治疗计划。所提出的优化算法在无需人类计划者干预的情况下为所有病例生成了高质量的计划。将结果与使用类似优化模型但有人类计划者干预获得的优化解进行比较,结果表明所提出的算法生成的优化计划优于手动计划。所提出的算法可以在合理的计算时间内生成可接受的解,并可用于开发全自动IMRT治疗计划方法,从而减少迭代过程中人类计划者的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验