Suppr超能文献

γ-MnO 包覆硫的核壳结构与相互作用机制对改善锂硫电池性能的研究

Core-Shell Structure and Interaction Mechanism of γ-MnO Coated Sulfur for Improved Lithium-Sulfur Batteries.

机构信息

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China.

Testing Center, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China.

出版信息

Small. 2017 Apr;13(14). doi: 10.1002/smll.201603466. Epub 2017 Jan 30.

Abstract

Lithium-sulfur batteries have attracted worldwide interest due to their high theoretical capacity of 1672 mAh g and low cost. However, the practical applications are hampered by capacity decay, mainly attributed to the polysulfide shuttle. Here, the authors have fabricated a solid core-shell γ-MnO -coated sulfur nanocomposite through the redox reaction between KMnO and MnSO . The multifunctional MnO shell facilitates electron and Li transport as well as efficiently prevents polysulfide dissolution via physical confinement and chemical interaction. Moreover, the γ-MnO crystallographic form also provides one-dimensional (1D) tunnels for the Li incorporation to alleviate insoluble Li S /Li S deposition at high discharge rate. More importantly, the MnO phase transformation to Mn O occurs during the redox reaction between polysulfides and γ-MnO is first thoroughly investigated. The S@γ-MnO composite exhibits a good capacity retention of 82% after 300 cycles (0.5 C) and a fade rate of 0.07% per cycle over 600 cycles (1 C). The degradation mechanism can probably be elucidated that the decomposition of the surface Mn O phase is the cause of polysulfide dissolution. The recent work thus sheds new light on the hitherto unknown surface interaction mechanism and the degradation mechanism of Li-S cells.

摘要

锂硫电池因其高达 1672 mAh g 的理论容量和低成本而引起了全球的关注。然而,其实际应用受到容量衰减的阻碍,主要归因于多硫化物穿梭。在这里,作者通过 KMnO 和 MnSO 之间的氧化还原反应,制备了一种具有核壳结构的 γ-MnO 包覆的硫纳米复合材料。多功能 MnO 壳层通过物理限制和化学相互作用,促进了电子和 Li 的传输,并有效地阻止了多硫化物的溶解。此外,γ-MnO 的晶型也为 Li 的掺入提供了一维(1D)隧道,以缓解在高放电速率下不可溶的 Li S /Li S 的沉积。更重要的是,首次彻底研究了多硫化物与 γ-MnO 之间的氧化还原反应过程中 MnO 相的转变。S@γ-MnO 复合材料在 300 次循环(0.5 C)后具有良好的容量保持率 82%,在 600 次循环(1 C)后每循环的衰减率为 0.07%。降解机理可能可以解释为表面 Mn O 相的分解是多硫化物溶解的原因。这项最新工作为 Li-S 电池的未知表面相互作用机制和降解机制提供了新的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验