Zhang Jianhua, Zou Rujia, Liu Qian, He Shu-Ang, Xu Kaibing, Hu Junqing
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
RSC Adv. 2018 Mar 1;8(17):9161-9167. doi: 10.1039/c7ra13235b. eCollection 2018 Feb 28.
Herein, a novel hybrid S@MnO@C nanosphere, comprising sulfur nanoparticles encapsulated by a MnO@C hollow dual-shell, is reported. Benefiting from a conductive C outer layer, the S@MnO@C hybrid nanosphere provided highly efficient pathways for fast electron/ion transfer and sufficient free space for the expansion of the encapsulated sulfur nanoparticles. Moreover, the dual-shell composed of a MnO inner layer and a C outer layer coating on S not only improved the efficacious encapsulation of sulfur, but also significantly suppressed the dissolution of polysulfides during cycling. As a result, the S@MnO@C electrode shows high capacity, high coulombic efficiency and excellent cycling stability. The S@MnO@C cathode delivered a discharge capacity of 593 mA h g in the fourth cycle and was able to maintain 573 mA h g after 100 charge-discharge cycles at 1.0C, corresponding to a capacity retention of 96.6%.
本文报道了一种新型的杂化S@MnO@C纳米球,它由被MnO@C中空双壳包裹的硫纳米颗粒组成。得益于导电的碳外层,S@MnO@C杂化纳米球为快速的电子/离子转移提供了高效路径,并为被包裹的硫纳米颗粒的膨胀提供了足够的自由空间。此外,由MnO内层和包覆在硫上的碳外层组成的双壳不仅提高了对硫的有效封装,还显著抑制了循环过程中多硫化物的溶解。结果,S@MnO@C电极表现出高容量、高库仑效率和优异的循环稳定性。S@MnO@C正极在第四个循环中的放电容量为593 mA h g,在1.0C下经过100次充放电循环后能够保持573 mA h g,容量保持率为96.6%。