Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, 6521GA, The Netherlands.
Med Phys. 2017 Jun;44(6):2242-2256. doi: 10.1002/mp.12127. Epub 2017 May 4.
Symmetry is an important feature of human anatomy and the absence of symmetry in medical images can indicate the presence of pathology. Quantification of image symmetry can then be used to improve the automatic analysis of medical images.
A method is presented that computes both local and global symmetry in 2D medical images. A symmetry axis is determined to define for each position p in the image a mirrored position p' on the contralateral side of the axis. In the neighborhood of p', an optimally corresponding position ps is determined by minimizing a cost function d that combines intensity differences in a patch around p and the mirrored patch around ps and the spatial distance between p' and ps. The optimal value of d is used as a measure of local symmetry s. The average of all values of s, indicated as S, quantifies global symmetry. Starting from an initial approximation of the symmetry axis, the optimal orientation and position of the axis is determined by greedy minimization of S.
The method was evaluated in three experiments concerning abnormality detection in frontal chest radiographs. In the first experiment, global symmetry S was used to discriminate between 174 normal images and 174 images containing diffuse textural abnormalities from the publicly available CRASS database of tuberculosis suspects. Performance, measured as area under the receiver operating characteristic curve Az was 0.838. The second experiment investigated whether adding the local symmetry s as an additional feature to a set of 106 texture features resulted in improvements in classifying local patches in the same image database. We found that Az increased from 0.878 to 0.891 (P = 0.001). In the third experiment, it was shown that the contrast of pulmonary nodules, obtained from the publicly available JSRT database, increased significantly in the local symmetry map compared to the original image.
We conclude that the proposed algorithm for symmetry computation provides informative features which can be used to improve abnormality detection in medical images both at a local and a global level.
对称性是人体解剖学的一个重要特征,医学图像中对称性的缺失可能表明存在病变。因此,可以通过量化图像的对称性来提高医学图像的自动分析能力。
提出了一种在二维医学图像中计算局部和全局对称性的方法。确定一条对称轴,以便为图像中的每个位置 p 定义对称轴另一侧的镜像位置 p'。在 p'的邻域内,通过最小化一个组合了 p 周围斑块和 ps 周围镜像斑块的强度差异以及 p'和 ps 之间的空间距离的代价函数 d,确定最佳对应位置 ps。d 的最优值用作局部对称性 s 的度量。所有 s 值的平均值 S 量化全局对称性。从对称轴的初始近似值开始,通过贪婪地最小化 S 来确定对称轴的最佳方向和位置。
该方法在三个涉及前胸部 X 光片异常检测的实验中进行了评估。在第一个实验中,使用全局对称性 S 来区分 174 张正常图像和 174 张来自公开的结核病疑似 CRASS 数据库的弥漫性纹理异常图像。以接收者操作特征曲线下的面积 Az 衡量,性能为 0.838。第二个实验研究了在同一图像数据库中,将局部对称性 s 添加到一组 106 个纹理特征中作为附加特征是否会提高对局部斑块的分类能力。我们发现 Az 从 0.878 增加到 0.891(P=0.001)。第三个实验表明,与原始图像相比,从公开的 JSRT 数据库中获得的肺结节对比度在局部对称图中显著增加。
我们得出结论,所提出的用于计算对称性的算法提供了有用的特征,可以用于提高医学图像的异常检测能力,无论是在局部还是全局水平上。