Suppr超能文献

小分子2-叠氮基-2-脱氧葡萄糖是哺乳动物细胞中O-连接的N-乙酰葡糖胺修饰的代谢化学报告分子,揭示了O-连接的N-乙酰葡糖胺转移酶出人意料的多底物选择性。

The Small Molecule 2-Azido-2-deoxy-glucose Is a Metabolic Chemical Reporter of O-GlcNAc Modifications in Mammalian Cells, Revealing an Unexpected Promiscuity of O-GlcNAc Transferase.

作者信息

Zaro Balyn W, Batt Anna R, Chuh Kelly N, Navarro Marisol X, Pratt Matthew R

机构信息

Department of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California , Los Angeles, California 90089-0744, United States.

出版信息

ACS Chem Biol. 2017 Mar 17;12(3):787-794. doi: 10.1021/acschembio.6b00877. Epub 2017 Jan 30.

Abstract

Glycans can be directly labeled using unnatural monosaccharide analogs, termed metabolic chemical reporters (MCRs). These compounds enable the secondary visualization and identification of glycoproteins by taking advantage of bioorthogonal reactions. Most widely used MCRs have azides or alkynes at the 2-N-acetyl position but are not selective for one class of glycoprotein over others. To address this limitation, we are exploring additional MCRs that have bioorthogonal functionality at other positions. Here, we report the characterization of 2-azido-2-deoxy-glucose (2AzGlc). We find that 2AzGlc selectively labels intracellular O-GlcNAc modifications, which further supports a somewhat unexpected, structural flexibility in this pathway. In contrast to the endogenous modification N-acetyl-glucosamine (GlcNAc), we find that 2AzGlc is not dynamically removed from protein substrates and that treatment with higher concentrations of per-acetylated 2AzGlc is toxic to cells. Finally, we demonstrate that this toxicity is an inherent property of the small-molecule, as removal of the 6-acetyl-group renders the corresponding reporter nontoxic but still results in protein labeling.

摘要

聚糖可以使用非天然单糖类似物直接标记,这些类似物被称为代谢化学报告分子(MCRs)。这些化合物利用生物正交反应实现糖蛋白的二级可视化和鉴定。最常用的MCRs在2-N-乙酰基位置含有叠氮化物或炔烃,但对一类糖蛋白的选择性并不高于其他糖蛋白。为了解决这一局限性,我们正在探索在其他位置具有生物正交功能的额外MCRs。在此,我们报告了2-叠氮基-2-脱氧葡萄糖(2AzGlc)的特性。我们发现2AzGlc选择性地标记细胞内的O-连接N-乙酰葡糖胺修饰,这进一步支持了该途径中某种出人意料的结构灵活性。与内源性修饰N-乙酰葡糖胺(GlcNAc)不同,我们发现2AzGlc不会从蛋白质底物上动态去除,并且用更高浓度的全乙酰化2AzGlc处理对细胞有毒。最后,我们证明这种毒性是小分子的固有特性,因为去除6-乙酰基会使相应的报告分子无毒,但仍会导致蛋白质标记。

相似文献

5
Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification.
J Am Chem Soc. 2014 Sep 3;136(35):12283-95. doi: 10.1021/ja504063c. Epub 2014 Aug 25.
7
Incorporation of unnatural sugars for the identification of glycoproteins.
Methods Mol Biol. 2013;951:57-67. doi: 10.1007/978-1-62703-146-2_5.
8
Metabolic Chemical Reporters of Glycans Exhibit Cell-Type-Selective Metabolism and Glycoprotein Labeling.
Chembiochem. 2017 Jul 4;18(13):1177-1182. doi: 10.1002/cbic.201700020. Epub 2017 Mar 28.
9
Global identification of O-GlcNAc-modified proteins.
Anal Chem. 2006 Jan 15;78(2):452-8. doi: 10.1021/ac051207j.
10
Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins.
Methods Mol Biol. 2009;534:251-79. doi: 10.1007/978-1-59745-022-5_19.

引用本文的文献

1
Achieving cell-type selectivity in metabolic oligosaccharide engineering.
RSC Chem Biol. 2025 Jul 29. doi: 10.1039/d5cb00168d.
2
Unveiling extracellular matrix assembly: Insights and approaches through bioorthogonal chemistry.
Mater Today Bio. 2023 Aug 7;22:100768. doi: 10.1016/j.mtbio.2023.100768. eCollection 2023 Oct.
3
Chemical Biology Approaches to Understanding Neuronal O-GlcNAcylation.
Isr J Chem. 2023 Feb;63(1-2). doi: 10.1002/ijch.202200071. Epub 2022 Nov 15.
4
Investigation of in vitro histone H3 glycosylation using H3 tail peptides.
Sci Rep. 2022 Nov 10;12(1):19251. doi: 10.1038/s41598-022-21883-0.
6
Synthesis and mammalian cell compatibility of light-released glycan precursors for controlled metabolic engineering.
Bioorg Med Chem. 2022 Sep 15;70:116918. doi: 10.1016/j.bmc.2022.116918. Epub 2022 Jul 5.
8
N-Azides as practical and effective tags for developing long-lived hyperpolarized agents.
Chem Sci. 2021 Oct 12;12(42):14309-14315. doi: 10.1039/d1sc04647k. eCollection 2021 Nov 3.
10
Tools for functional dissection of site-specific O-GlcNAcylation.
RSC Chem Biol. 2020 Jun 12;1(3):98-109. doi: 10.1039/d0cb00052c. eCollection 2020 Aug 1.

本文引用的文献

1
An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.
ACS Chem Biol. 2016 Nov 18;11(11):3002-3006. doi: 10.1021/acschembio.6b00678. Epub 2016 Oct 14.
2
Chemical Methods for Encoding and Decoding of Posttranslational Modifications.
Cell Chem Biol. 2016 Jan 21;23(1):86-107. doi: 10.1016/j.chembiol.2015.11.006.
3
Chemical methods for the proteome-wide identification of posttranslationally modified proteins.
Curr Opin Chem Biol. 2015 Feb;24:27-37. doi: 10.1016/j.cbpa.2014.10.020. Epub 2014 Nov 15.
4
Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification.
J Am Chem Soc. 2014 Sep 3;136(35):12283-95. doi: 10.1021/ja504063c. Epub 2014 Aug 25.
5
Chemical reporter for visualizing metabolic cross-talk between carbohydrate metabolism and protein modification.
ACS Chem Biol. 2014 Sep 19;9(9):1991-6. doi: 10.1021/cb5005564. Epub 2014 Jul 29.
6
O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond.
Chem Soc Rev. 2014 Oct 7;43(19):6839-58. doi: 10.1039/c4cs00038b. Epub 2014 Apr 24.
7
Finding the right (bioorthogonal) chemistry.
ACS Chem Biol. 2014 Mar 21;9(3):592-605. doi: 10.1021/cb400828a. Epub 2014 Jan 30.
8
Chemical reporters for biological discovery.
Nat Chem Biol. 2013 Aug;9(8):475-84. doi: 10.1038/nchembio.1296.
9
O-GlcNAc in cancer biology.
Amino Acids. 2013 Oct;45(4):719-33. doi: 10.1007/s00726-013-1543-8. Epub 2013 Jul 9.
10
N-Propargyloxycarbamate monosaccharides as metabolic chemical reporters of carbohydrate salvage pathways and protein glycosylation.
Chem Commun (Camb). 2013 May 14;49(39):4328-30. doi: 10.1039/c2cc37963e. Epub 2012 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验