Liu Yang, Gunawan Rudiyanto
Institute for Chemical and Bioengineering, ETH Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Institute for Chemical and Bioengineering, ETH Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
J Biotechnol. 2017 Feb 20;244:34-44. doi: 10.1016/j.jbiotec.2017.01.013. Epub 2017 Jan 27.
The performance of model-based bioprocess optimizations depends on the accuracy of the mathematical model. However, models of bioprocesses often have large uncertainty due to the lack of model identifiability. In the presence of such uncertainty, process optimizations that rely on the predictions of a single "best fit" model, e.g. the model resulting from a maximum likelihood parameter estimation using the available process data, may perform poorly in real life. In this study, we employed ensemble modeling to account for model uncertainty in bioprocess optimization. More specifically, we adopted a Bayesian approach to define the posterior distribution of the model parameters, based on which we generated an ensemble of model parameters using a uniformly distributed sampling of the parameter confidence region. The ensemble-based process optimization involved maximizing the lower confidence bound of the desired bioprocess objective (e.g. yield or product titer), using a mean-standard deviation utility function. We demonstrated the performance and robustness of the proposed strategy in an application to a monoclonal antibody batch production by mammalian hybridoma cell culture.
基于模型的生物过程优化的性能取决于数学模型的准确性。然而,由于缺乏模型可识别性,生物过程模型往往具有很大的不确定性。在存在这种不确定性的情况下,依赖于单个“最佳拟合”模型预测的过程优化,例如使用可用过程数据通过最大似然参数估计得到的模型,在实际应用中可能表现不佳。在本研究中,我们采用集成建模来处理生物过程优化中的模型不确定性。更具体地说,我们采用贝叶斯方法来定义模型参数的后验分布,并在此基础上使用参数置信区域的均匀分布采样生成模型参数的集合。基于集合的过程优化涉及使用均值-标准差效用函数最大化所需生物过程目标(例如产量或产物滴度)的下置信界。我们在哺乳动物杂交瘤细胞培养的单克隆抗体制备批次生产应用中展示了所提出策略的性能和稳健性。