Suppr超能文献

基于移动 horizon 估计的连续尺度上的动态参数估计和预测:在工业细胞培养种子培养中应用。

Dynamic parameter estimation and prediction over consecutive scales, based on moving horizon estimation: applied to an industrial cell culture seed train.

机构信息

Ostwestfalen-Lippe University of Applied Sciences and Arts, Biotechnology and Bioprocess Engineering, Lemgo, Germany.

Novartis Technical Research and Development, Sandoz GmbH, Langkampfen, Austria.

出版信息

Bioprocess Biosyst Eng. 2021 Apr;44(4):793-808. doi: 10.1007/s00449-020-02488-1. Epub 2020 Dec 29.

Abstract

Bioprocess modeling has become a useful tool for prediction of the process future with the aim to deduce operating decisions (e.g. transfer or feeds). Due to variabilities, which often occur between and within batches, updating (re-estimation) of model parameters is required at certain time intervals (dynamic parameter estimation) to obtain reliable predictions. This can be challenging in the presence of low sampling frequencies (e.g. every 24 h), different consecutive scales and large measurement errors, as in the case of cell culture seed trains. This contribution presents an iterative learning workflow which generates and incorporates knowledge concerning cell growth during the process by using a moving horizon estimation (MHE) approach for updating of model parameters. This estimation technique is compared to a classical weighted least squares estimation (WLSE) approach in the context of model updating over three consecutive cultivation scales (40-2160 L) of an industrial cell culture seed train. Both techniques were investigated regarding robustness concerning the aforementioned challenges and the required amount of experimental data (estimation horizon). It is shown how the proposed MHE can deal with the aforementioned difficulties by the integration of prior knowledge, even if only data at two sampling points are available, outperforming the classical WLSE approach. This workflow allows to adequately integrate current process behavior into the model and can therefore be a suitable component of a digital twin.

摘要

生物过程建模已经成为一种有用的工具,可以预测未来的过程,目的是推导出操作决策(例如转移或进料)。由于批次之间和批次内部经常出现的可变性,需要在某些时间间隔(动态参数估计)更新(重新估计)模型参数,以获得可靠的预测。在采样频率低(例如每 24 小时)、连续规模不同和测量误差大的情况下,这可能具有挑战性,例如在细胞培养种子列车的情况下。本贡献提出了一种迭代学习工作流程,该工作流程通过使用移动地平线估计(MHE)方法来更新模型参数,从而在过程中生成和结合有关细胞生长的知识。在工业细胞培养种子列车的三个连续培养规模(40-2160 L)上进行模型更新的背景下,将该估计技术与经典加权最小二乘估计(WLSE)方法进行了比较。针对上述挑战和所需实验数据量(估计范围),研究了这两种技术的稳健性。结果表明,所提出的 MHE 如何通过整合先验知识来处理上述困难,即使只有两个采样点的数据可用,也可以优于经典的 WLSE 方法。该工作流程允许将当前过程行为适当地整合到模型中,因此可以成为数字双胞胎的合适组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49a5/7997845/fc6456c546ec/449_2020_2488_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验