Suppr超能文献

JuPOETs:一种在Julia编程语言中用于估计生化模型集合的约束多目标优化方法。

JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

作者信息

Bassen David M, Vilkhovoy Michael, Minot Mason, Butcher Jonathan T, Varner Jeffrey D

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, 14853, NY, USA.

Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, 14853, NY, USA.

出版信息

BMC Syst Biol. 2017 Jan 25;11(1):10. doi: 10.1186/s12918-016-0380-2.

Abstract

BACKGROUND

Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters.

RESULTS

In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions.

CONCLUSIONS

JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.

摘要

背景

集成建模是一种很有前景的方法,可用于在确定性数学模型中获得稳健的预测和粗粒度的群体行为。集成方法通过使用参数或模型族而不是单个最佳拟合参数或固定模型结构来解决模型不确定性问题。可以根据模拟误差以及其他标准(如多样性或稳态性能)来选择参数集。使用参数集进行模拟可以估计模型变量的置信区间,并且尽管存在许多约束不佳的参数,但仍能稳健地约束模型预测。

结果

在本软件说明中,我们提出了一种基于多目标的技术来估计参数或模型集,即Julia编程语言中的帕累托最优集成技术(JuPOETs)。JuPOETs将模拟退火与帕累托最优性相结合,以在相互竞争的训练目标之间的最优权衡表面上或附近估计集。我们在一系列多目标问题上展示了JuPOETs,包括具有参数边界和系统约束的测试函数,以及用于识别具有四个相互冲突训练目标的概念验证生化模型。对于该系列测试函数,JuPOETs识别最优或接近最优解的速度比Octave中的相应实现快约六倍。对于概念验证生化模型,JuPOETs生成了一组参数,这些参数给出了冲突数据集训练数据的均值,同时估计了在每个单独目标函数上表现良好的参数集。

结论

JuPOETs是一种很有前景的使用多目标优化来估计参数和模型集的方法。JuPOETs可以进行调整以解决许多问题类型,包括混合二进制和连续变量类型、双层优化问题和约束问题,而无需改变基础算法。JuPOETs是开源的,根据MIT许可可用,并且可以使用Julia包管理器从JuPOETs GitHub存储库进行安装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/915b/5264316/72b11fae82a6/12918_2016_380_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验