Physics Department and Institute for Advanced Study, Technische Universität München, Am Coulombwall 4a, Garching bei München, Germany.
Biomedical Center, Molecular Biology, Ludwig-Maximilians-Universität München, Martinsried near Munich, Germany.
Sci Adv. 2016 Nov 23;2(11):e1600974. doi: 10.1126/sciadv.1600974. eCollection 2016 Nov.
Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami-based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of -1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques.
揭示核小体缔合的能量景观可能有助于理解更高阶的染色质结构及其对基因组调控的影响。我们通过将两个核小体整合到基于 DNA 折纸的力谱仪中,直接测量来实现这一目标,这使得我们能够通过单粒子电子显微镜成像对核小体-核小体距离频率进行亚纳米分辨率的测量。从数据中,我们推导出了核小体对相互作用的玻尔兹曼加权距离相关能量景观。我们发现了一个浅但长程(约 6nm)的核小体对吸引力势能,在接近直接接触距离时具有-1.6kcal/mol 的最小值。相对核小体取向的影响很小,但组蛋白 H4 的乙酰化或去除组蛋白尾部会大大降低相互作用强度。由于弱而浅的对势能,高阶核小体组装将是顺应的,并在没有额外辅助因子的情况下经历动态形状波动。我们的结果有助于更准确地描述染色质,并且我们的力谱仪为使用成像技术直接和高分辨率研究分子相互作用提供了强大的工具。