Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2409167121. doi: 10.1073/pnas.2409167121. Epub 2024 Aug 8.
Linker histones play an essential role in chromatin packaging by facilitating compaction of the 11-nm fiber of nucleosomal "beads on a string." The result is a heterogeneous condensed state with local properties that range from dynamic, irregular, and liquid-like to stable and regular structures (the 30-nm fiber), which in turn impact chromatin-dependent activities at a fundamental level. The properties of the condensed state depend on the type of linker histone, particularly on the highly disordered C-terminal tail, which is the most variable region of the protein, both between species, and within the various subtypes and cell-type specific variants of a given organism. We have developed an in vitro model system comprising linker histone tail and linker DNA, which although very minimal, displays surprisingly complex behavior, and is sufficient to model the known states of linker histone-condensed chromatin: disordered "fuzzy" complexes ("open" chromatin), dense liquid-like assemblies (dynamic condensates), and higher-order structures (organized 30-nm fibers). A crucial advantage of such a simple model is that it allows the study of the various condensed states by NMR, circular dichroism, and scattering methods. Moreover, it allows capture of the thermodynamics underpinning the transitions between states through calorimetry. We have leveraged this to rationalize the distinct condensing properties of linker histone subtypes and variants across species that are encoded by the amino acid content of their C-terminal tails. Three properties emerge as key to defining the condensed state: charge density, lysine/arginine ratio, and proline-free regions, and we evaluate each separately using a strategic mutagenesis approach.
连接组蛋白在染色质包装中起着至关重要的作用,通过促进核小体“串珠上的珠子”的 11nm 纤维的紧缩,有助于染色质的紧缩。结果是一种具有局部性质的异质浓缩状态,从动态、不规则和液态到稳定和规则的结构(30nm 纤维)不等,这反过来又从根本上影响依赖染色质的活性。浓缩状态的性质取决于连接组蛋白的类型,特别是高度无序的 C 末端尾部,这是蛋白质中最可变的区域,不仅在不同物种之间,而且在给定生物体的各种亚型和细胞类型特异性变体之间也是如此。我们开发了一种包含连接组蛋白尾部和连接 DNA 的体外模型系统,尽管非常简单,但表现出惊人的复杂行为,足以模拟已知的连接组蛋白浓缩染色质状态:无序的“模糊”复合物(“开放”染色质)、密集的液态组装(动态凝聚物)和高级结构(有组织的 30nm 纤维)。这种简单模型的一个关键优势是,它允许通过 NMR、圆二色性和散射方法研究各种浓缩状态。此外,它允许通过量热法捕获支持状态之间转变的热力学。我们利用这一点来合理化连接组蛋白亚型和变体在不同物种中的不同浓缩特性,这些特性由其 C 末端尾部的氨基酸含量编码。有三个特性被认为是定义浓缩状态的关键:电荷密度、赖氨酸/精氨酸比和脯氨酸自由区,我们使用策略性的诱变方法分别评估每个特性。