Suppr超能文献

使用具有空间和参数约束的基于模型的方法进行直接扩散张量估计。

Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints.

作者信息

Zhu Yanjie, Peng Xi, Wu Yin, Wu Ed X, Ying Leslie, Liu Xin, Zheng Hairong, Liang Dong

机构信息

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, China.

Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Med Phys. 2017 Feb;44(2):570-580. doi: 10.1002/mp.12054. Epub 2017 Jan 31.

Abstract

PURPOSE

To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data.

METHODS

The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices.

RESULTS

The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors.

CONCLUSION

The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue.

摘要

目的

开发一种基于模型的新方法,该方法具有空间和参数约束(MB-SPC),旨在通过直接从高度欠采样的k空间数据估计扩散张量来加速扩散张量成像(DTI)。

方法

MB-SPC方法使用L1-L2范数有效整合不同扩散加权图像联合稀疏性的先验信息,并使用全变差半范数整合扩散张量的平滑性。欠采样的k空间数据集取自模拟体模和离体实验大鼠心脏的全采样DTI数据集,加速因子范围为2至4。通过使用非线性共轭梯度下降算法求解最小化问题直接重建扩散张量。使用DTI指数的归一化均方根误差(nRMSE)对重建性能进行定量评估。

结果

MB-SPC方法在加速因子高达4时可实现可接受的DTI测量值。实验结果表明,与大多数在更高净加速因子下运行的现有方法相比,该方法能够更准确地估计扩散张量。

结论

所提出的方法可以显著减少伪影,特别是在更高的加速因子或更低的信噪比情况下。该方法可以轻松适应磁共振弛豫测量参数映射,因此在表征神经、肌肉和心脏组织等生物组织方面很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验