Department of Materials Science and Engineering, MIT , Cambridge, Massachusetts 02139, United States.
Materials Science Division, LBNL , Berkeley, California 94720, United States.
J Am Chem Soc. 2017 Feb 22;139(7):2672-2681. doi: 10.1021/jacs.6b11301. Epub 2017 Feb 13.
While control over crystal structure is one of the primary objectives in crystal growth, the present lack of predictive understanding of the mechanisms driving structure selection precludes the predictive synthesis of polymorphic materials. We address the formation of off-stoichiometric intermediates as one such handle driving polymorph selection in the diverse class of MnO-framework structures. Specifically, we build on the recent benchmark of the SCAN functional for the ab initio modeling of MnO to examine the effect of alkali-insertion, protonation, and hydration to derive the thermodynamic conditions favoring the formation of the most common MnO phases-β, γ, R, α, δ, and λ-from aqueous solution. We explain the phase selection trends through the geometric and chemical compatibility of the alkali cations and the available phases, the interaction of water with the system, and the critical role of protons. Our results offer both a quantitative synthesis roadmap for this important class of functional oxides, and a description of the various structural phase transformations that may occur in this system.
虽然控制晶体结构是晶体生长的主要目标之一,但目前对驱动结构选择的机制缺乏预测性理解,这使得多晶材料的预测性合成成为不可能。我们将偏离化学计量的中间产物的形成作为驱动 MnO 骨架结构这一多样化结构中多晶选择的一个控制因素。具体来说,我们基于最近对 SCAN 函数进行的 MnO 从头计算建模的基准,研究了碱插入、质子化和水合作用对形成最常见的 MnO 相(β、γ、R、α、δ 和 λ)的热力学条件的影响,这些相都是从水溶液中获得的。我们通过碱金属阳离子和可用相的几何和化学相容性、水与系统的相互作用以及质子的关键作用来解释相选择趋势。我们的研究结果不仅为这一重要的功能氧化物类提供了一个定量的综合路线图,而且还描述了该系统中可能发生的各种结构相变。