Zarriz Arian, Journaux Baptiste, Powell-Palm Matthew J
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA.
Department of Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA.
Nat Commun. 2024 Dec 18;15(1):10666. doi: 10.1038/s41467-024-54625-z.
Phase stability, and the limits thereof, are a central concern of materials thermodynamics. However, the temperature limits of equilibrium liquid stability in chemical systems have only been widely characterized under constant (typically atmospheric) pressure conditions, whereunder these limits are represented by the eutectic. At higher pressures, the eutectic will shift in both temperature and chemical composition, opening a wide thermodynamic parameter space over which the absolute limit of liquid stability, i.e., the limit under arbitrary values of the thermodynamic forces at play (here pressure and concentration), might exist. In this work, we use isochoric freezing and melting to measure this absolute limit for the first time in several binary aqueous brines, and nodding to the etymology of "eutectic", we name it the "cenotectic" (from Greek "κοινός-τῆξῐς", meaning "universal-melt"). We discuss the implications of our findings on ocean worlds within our solar system and cold ocean exoplanets; estimate thermodynamic limits on ice crust thickness and final ocean depth (of the cenotectic or "endgame" ocean) using measured cenotectic pressures; and finally provide a generalized thermodynamic perspective on (and definition for) this fundamental thermodynamic invariant point.
相稳定性及其极限是材料热力学的核心关注点。然而,化学系统中平衡液相稳定性的温度极限仅在恒定(通常为大气)压力条件下得到广泛表征,在此条件下这些极限由共晶点表示。在更高压力下,共晶点将在温度和化学成分两方面发生移动,从而开启一个广阔的热力学参数空间,在这个空间中可能存在液相稳定性的绝对极限,即在所涉及的热力学力(此处为压力和浓度)的任意值下的极限。在这项工作中,我们首次使用等容冻结和熔化来测量几种二元盐水溶液的这一绝对极限,并鉴于“共晶”一词的词源,我们将其命名为“全熔晶”(源自希腊语“κοινός - τῆξῐς”,意为“普遍熔化”)。我们讨论了我们的发现对太阳系内海洋世界和寒冷海洋系外行星的影响;利用测量得到的全熔晶压力估算冰壳厚度和最终海洋深度(全熔晶或“最终阶段”海洋的)的热力学极限;最后提供关于这个基本热力学不变点的广义热力学观点(以及定义)。