Suppr超能文献

利用手性细胞形态确保锥虫的高度定向游动。

Use of chiral cell shape to ensure highly directional swimming in trypanosomes.

作者信息

Wheeler Richard John

机构信息

Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

出版信息

PLoS Comput Biol. 2017 Jan 31;13(1):e1005353. doi: 10.1371/journal.pcbi.1005353. eCollection 2017 Jan.

Abstract

Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion.

摘要

游动的细胞通常沿着螺旋路径移动,或者在游动时进行纵向旋转,这是由于流体动力阻力或推进力中的手性不对称,使游动路径弯曲成螺旋形。螺旋路径对某些形式的趋化作用有益,但当对称形状也能实现高度定向游动时,为何不对称形状如此普遍尚不清楚。在此,我分析了两种人类寄生虫的昆虫生命周期阶段的游动情况,即布氏锥虫和墨西哥利什曼原虫。这定量地显示了布氏锥虫细胞形状的手性如何赋予高度定向的游动能力。高速视频显微镜显示,布氏锥虫、墨西哥利什曼原虫和一种布氏锥虫RNA干扰形态突变体具有一系列形状不对称性,从野生型布氏锥虫(高度手性)到墨西哥利什曼原虫(近轴对称)。手性细胞在游动时进行纵向旋转,纵向旋转越快,游动路径的方向性越强。模拟表明,手性细胞形状上的流体动力阻力导致了旋转,并且由此产生的游动路径的预测几何形状与观察到的游动路径的方向性相匹配。这种游动路径几何形状的模拟表明,高度手性的细胞形状是一种强大的机制,通过它微观尺度的游动者能够在低雷诺数下实现高度定向的游动。它对形状或推进力的随机变化(生物噪声)不敏感。高度对称的细胞形状可以实现高度定向的游动,但在存在生物噪声的情况下有产生无效圆形游动路径的风险。这表明布氏锥虫的手性细胞形状(与鞭毛的侧向附着有关)可能是与这种寄生虫在血液中生存的生活方式相关的一种适应,以实现强大的高度定向游动。这也为游动细胞为何往往在细胞形状或推进力上具有强烈不对称性提供了一个合理的一般性解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5878/5308837/ddfd4bd615ca/pcbi.1005353.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验