Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.
Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
J Cell Sci. 2019 Aug 15;132(16):jcs231795. doi: 10.1242/jcs.231795.
Analysis of flagellum and cilium beating in three dimensions (3D) is important for understanding cell motility, and using fluorescence microscopy to do so would be extremely powerful. Here, high-speed multifocal plane fluorescence microscopy, where the light path is split to visualise multiple focal planes simultaneously, was used to reconstruct and movement in 3D. These species are uniflagellate unicellular parasites for which motility is vital. It was possible to use either a fluorescent stain or a genetically-encoded fluorescent protein to visualise flagellum and cell movement at 200 Hz frame rates. This addressed two open questions regarding and flagellum beating, which contributes to their swimming behaviours: 1) how planar is the flagellum beat, and 2) what is the nature of flagellum beating during 'tumbling'? We showed that has notable deviations from a planar flagellum beat, and that during tumbling the flagellum bends the cell and beats only in the distal portion to achieve cell reorientation. This demonstrates high-speed multifocal plane fluorescence microscopy as a powerful tool for the analysis of beating flagella.
分析鞭毛和纤毛在三维(3D)中的运动对于理解细胞运动非常重要,而使用荧光显微镜来进行分析将是非常强大的。在这里,使用高速多焦面荧光显微镜,该显微镜的光路被分割以同时可视化多个焦面,从而重建鞭毛和细胞在 3D 中的运动。这些物种是单细胞原生动物寄生虫,运动对于它们至关重要。可以使用荧光染料或基因编码的荧光蛋白来可视化鞭毛和细胞运动,帧率可达 200Hz。这解决了关于 和 鞭毛运动的两个开放性问题,这些问题有助于它们的游泳行为:1) 鞭毛的平面性如何,以及 2)在“翻滚”过程中鞭毛的运动性质是什么?我们表明, 存在明显的偏离平面的鞭毛运动,并且在翻滚过程中, 鞭毛弯曲细胞,仅在远端部分运动以实现细胞重新定向。这证明了高速多焦面荧光显微镜是分析鞭毛运动的有力工具。