Suppr超能文献

基于粒子群优化算法的基因组规模代谢网络最优敲除策略

Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

作者信息

Nair Govind, Jungreuthmayer Christian, Zanghellini Jürgen

机构信息

Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, Vienna, 1190, Austria.

Austrian Centre of Industrial Biotechnology, Muthgasse 11, Vienna, 1190, Austria.

出版信息

BMC Bioinformatics. 2017 Feb 1;18(1):78. doi: 10.1186/s12859-017-1483-5.

Abstract

BACKGROUND

Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives.

RESULTS

To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock.

CONCLUSIONS

PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

摘要

背景

基因敲除策略,尤其是约束最小割集(cMCSs)的概念,是用于操纵代谢网络的一系列工具的重要组成部分。给定特定设计,即使在基因组规模的网络中也可以计算cMCSs。然而,我们不仅希望找到给定设计的最优干预策略,还希望找到最佳可能设计。我们的解决方案(PSOMCS)是使用粒子群优化(PSO)以及从化学计量矩阵直接计算cMCSs,以获得满足多个目标的最优设计。

结果

为了说明PSOMCS的工作原理,我们将其应用于一个简单网络。接下来,我们通过将其性能与中等规模大肠杆菌核心代谢网络上的其他可比方法进行比较,展示其优越性。PSOMCS不仅能找到与先前发表结果相当的解决方案,而且速度快几个数量级。最后,我们使用PSOMCS预测大肠杆菌基因组规模代谢模型中满足多个目标的基因敲除,并将其与OptKnock和RobustKnock进行比较。

结论

与其他当前方法相比,PSOMCS能找到有竞争力的基因敲除策略和设计,并且在某些情况下速度明显更快。它可用于识别能在大型和基因组规模代谢网络中强制实现最优期望行为的基因敲除。随着与工业相关生物体的更大代谢模型的出现,它将更加有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1268/5286819/a6940e82ce0c/12859_2017_1483_Fig1_HTML.jpg

相似文献

1
Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.
BMC Bioinformatics. 2017 Feb 1;18(1):78. doi: 10.1186/s12859-017-1483-5.
2
Genome-scale strain designs based on regulatory minimal cut sets.
Bioinformatics. 2015 Sep 1;31(17):2844-51. doi: 10.1093/bioinformatics/btv217. Epub 2015 Apr 25.
3
Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.
BMC Bioinformatics. 2013;14 Suppl 2(Suppl 2):S17. doi: 10.1186/1471-2105-14-S2-S17. Epub 2013 Jan 21.
4
Computing complex metabolic intervention strategies using constrained minimal cut sets.
Metab Eng. 2011 Mar;13(2):204-13. doi: 10.1016/j.ymben.2010.12.004. Epub 2010 Dec 13.
5
6
7
Comparison and improvement of algorithms for computing minimal cut sets.
BMC Bioinformatics. 2013 Nov 6;14:318. doi: 10.1186/1471-2105-14-318.
8
Enumeration of smallest intervention strategies in genome-scale metabolic networks.
PLoS Comput Biol. 2014 Jan;10(1):e1003378. doi: 10.1371/journal.pcbi.1003378. Epub 2014 Jan 2.
9
Speeding up the core algorithm for the dual calculation of minimal cut sets in large metabolic networks.
BMC Bioinformatics. 2020 Nov 9;21(1):510. doi: 10.1186/s12859-020-03837-3.
10
A hybrid of Cuckoo Search and Minimization of Metabolic Adjustment to optimize metabolites production in genome-scale models.
Comput Biol Med. 2018 Nov 1;102:112-119. doi: 10.1016/j.compbiomed.2018.09.015. Epub 2018 Sep 22.

引用本文的文献

2
Comparison of Optimization-Modelling Methods for Metabolites Production in Escherichia coli.
J Integr Bioinform. 2020 May 6;17(1):20190073. doi: 10.1515/jib-2019-0073.
3
Determination of growth-coupling strategies and their underlying principles.
BMC Bioinformatics. 2019 Aug 28;20(1):447. doi: 10.1186/s12859-019-2946-7.
4
Improving designer glycan production in through model-guided metabolic engineering.
Metab Eng Commun. 2019 Mar 29;9:e00088. doi: 10.1016/j.mec.2019.e00088. eCollection 2019 Dec.
5
Genetic Optimization Algorithm for Metabolic Engineering Revisited.
Metabolites. 2018 May 16;8(2):33. doi: 10.3390/metabo8020033.

本文引用的文献

1
Zero-growth bioprocesses: A challenge for microbial production strains and bioprocess engineering.
Eng Life Sci. 2016 Nov 11;17(1):27-35. doi: 10.1002/elsc.201600108. eCollection 2017 Jan.
2
Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates.
Appl Environ Microbiol. 2016 Jul 15;82(15):4570-4583. doi: 10.1128/AEM.00638-16. Print 2016 Aug 1.
3
Designing minimal microbial strains of desired functionality using a genetic algorithm.
Algorithms Mol Biol. 2015 Dec 21;10:29. doi: 10.1186/s13015-015-0060-6. eCollection 2015.
4
On the feasibility of growth-coupled product synthesis in microbial strains.
Metab Eng. 2015 Jul;30:166-178. doi: 10.1016/j.ymben.2015.05.006. Epub 2015 Jun 22.
5
Genome-scale strain designs based on regulatory minimal cut sets.
Bioinformatics. 2015 Sep 1;31(17):2844-51. doi: 10.1093/bioinformatics/btv217. Epub 2015 Apr 25.
7
Design of optimally constructed metabolic networks of minimal functionality.
PLoS One. 2014 Mar 25;9(3):e92583. doi: 10.1371/journal.pone.0092583. eCollection 2014.
8
Enumeration of smallest intervention strategies in genome-scale metabolic networks.
PLoS Comput Biol. 2014 Jan;10(1):e1003378. doi: 10.1371/journal.pcbi.1003378. Epub 2014 Jan 2.
9
Comparison and improvement of algorithms for computing minimal cut sets.
BMC Bioinformatics. 2013 Nov 6;14:318. doi: 10.1186/1471-2105-14-318.
10
A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains.
Bioprocess Biosyst Eng. 2014 Mar;37(3):521-32. doi: 10.1007/s00449-013-1019-y. Epub 2013 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验