Suppr超能文献

通过模型引导的代谢工程改善设计聚糖的生产。

Improving designer glycan production in through model-guided metabolic engineering.

作者信息

Wayman Joseph A, Glasscock Cameron, Mansell Thomas J, DeLisa Matthew P, Varner Jeffrey D

机构信息

School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Metab Eng Commun. 2019 Mar 29;9:e00088. doi: 10.1016/j.mec.2019.e00088. eCollection 2019 Dec.

Abstract

Asparagine-linked (-linked) glycosylation is the most common protein modification in eukaryotes, affecting over two-thirds of the proteome. Glycosylation is also critical to the pharmacokinetic activity and immunogenicity of many therapeutic proteins currently produced in complex eukaryotic hosts. The discovery of a protein glycosylation pathway in the pathogen and its subsequent transfer into laboratory strains of has spurred great interest in glycoprotein production in prokaryotes. However, prokaryotic glycoprotein production has several drawbacks, including insufficient availability of non-native glycan precursors. To address this limitation, we used a constraint-based model of metabolism in combination with heuristic optimization to design gene knockout strains that overproduced glycan precursors. First, we incorporated reactions associated with glycan assembly into a genome-scale model of metabolism. We then identified gene knockout strains that coupled optimal growth to glycan synthesis. Simulations suggested that these growth-coupled glycan overproducing strains had metabolic imbalances that rerouted flux toward glycan precursor synthesis. We then validated the model-identified knockout strains experimentally by measuring glycan expression using a flow cytometric-based assay involving fluorescent labeling of cell surface-displayed glycans. Overall, this study demonstrates the promising role that metabolic modeling can play in optimizing the performance of a next-generation microbial glycosylation platform.

摘要

天冬酰胺连接(N-连接)糖基化是真核生物中最常见的蛋白质修饰,影响超过三分之二的蛋白质组。糖基化对于目前在复杂真核宿主中生产的许多治疗性蛋白质的药代动力学活性和免疫原性也至关重要。在病原体中发现蛋白质糖基化途径并随后将其转移到实验室菌株中,激发了人们对原核生物中糖蛋白生产的极大兴趣。然而,原核生物糖蛋白生产存在几个缺点,包括非天然聚糖前体的可用性不足。为了解决这一限制,我们使用基于约束的代谢模型结合启发式优化来设计过量生产聚糖前体的基因敲除菌株。首先,我们将与N-聚糖组装相关的反应纳入N-代谢的基因组规模模型中。然后,我们鉴定了将最佳生长与聚糖合成耦合的基因敲除菌株。模拟表明,这些生长耦合的聚糖过量生产菌株存在代谢失衡,从而使通量重新导向聚糖前体合成。然后,我们通过使用基于流式细胞术的测定法测量聚糖表达,对模型鉴定的敲除菌株进行了实验验证,该测定法涉及对细胞表面展示的聚糖进行荧光标记。总体而言,这项研究证明了代谢建模在优化下一代微生物糖基化平台性能方面可以发挥的有前景的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7432/6454127/3cb88de34148/gr1.jpg

相似文献

1
Improving designer glycan production in through model-guided metabolic engineering.
Metab Eng Commun. 2019 Mar 29;9:e00088. doi: 10.1016/j.mec.2019.e00088. eCollection 2019 Dec.
2
A flow cytometric approach to engineering Escherichia coli for improved eukaryotic protein glycosylation.
Metab Eng. 2018 May;47:488-495. doi: 10.1016/j.ymben.2018.04.014. Epub 2018 Apr 25.
3
A combinatorial DNA assembly approach to biosynthesis of N-linked glycans in E. coli.
Glycobiology. 2023 Mar 6;33(2):138-149. doi: 10.1093/glycob/cwac082.
4
Production of initial-stage eukaryotic N-glycan and its protein glycosylation in Escherichia coli.
J Biosci Bioeng. 2015 Apr;119(4):399-405. doi: 10.1016/j.jbiosc.2014.09.016. Epub 2014 Oct 16.
5
N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli.
Science. 2002 Nov 29;298(5599):1790-3. doi: 10.1126/science.298.5599.1790.
6
Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria.
Microb Cell Fact. 2021 Oct 14;20(1):198. doi: 10.1186/s12934-021-01689-x.
7
Metabolic engineering of glycoprotein biosynthesis in bacteria.
Emerg Top Life Sci. 2018 Oct 26;2(3):419-432. doi: 10.1042/ETLS20180004.
8
Engineered genetic selection links in vivo protein folding and stability with asparagine-linked glycosylation.
Biotechnol J. 2013 Dec;8(12):1445-51. doi: 10.1002/biot.201300026. Epub 2013 Oct 4.
9
Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans.
Biotechnol Adv. 2023 Oct;67:108180. doi: 10.1016/j.biotechadv.2023.108180. Epub 2023 May 24.
10
Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli.
J Biosci Bioeng. 2014 Sep;118(3):256-62. doi: 10.1016/j.jbiosc.2014.02.011. Epub 2014 Mar 17.

引用本文的文献

1
Biopharming of Lactoferrin: Current Strategies and Future Prospects.
Pharmaceutics. 2025 Aug 7;17(8):1023. doi: 10.3390/pharmaceutics17081023.
2
A combinatorial DNA assembly approach to biosynthesis of N-linked glycans in E. coli.
Glycobiology. 2023 Mar 6;33(2):138-149. doi: 10.1093/glycob/cwac082.
3
Strategies for Glycoengineering Therapeutic Proteins.
Front Chem. 2022 Apr 13;10:863118. doi: 10.3389/fchem.2022.863118. eCollection 2022.
4
Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria.
Microb Cell Fact. 2021 Oct 14;20(1):198. doi: 10.1186/s12934-021-01689-x.
5
The era of big data: Genome-scale modelling meets machine learning.
Comput Struct Biotechnol J. 2020 Oct 16;18:3287-3300. doi: 10.1016/j.csbj.2020.10.011. eCollection 2020.
6
Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells.
Front Chem. 2020 Jul 29;8:645. doi: 10.3389/fchem.2020.00645. eCollection 2020.
8
Synthetic biology strategies for improving microbial synthesis of "green" biopolymers.
J Biol Chem. 2018 Apr 6;293(14):5053-5061. doi: 10.1074/jbc.TM117.000368. Epub 2018 Jan 16.

本文引用的文献

1
Modulating IgG effector function by Fc glycan engineering.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3485-3490. doi: 10.1073/pnas.1702173114. Epub 2017 Mar 13.
2
Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.
BMC Bioinformatics. 2017 Feb 1;18(1):78. doi: 10.1186/s12859-017-1483-5.
3
A common glycan structure on immunoglobulin G for enhancement of effector functions.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10611-6. doi: 10.1073/pnas.1513456112. Epub 2015 Aug 7.
5
Escherichia coli as a glycoprotein production host: recent developments and challenges.
Curr Opin Biotechnol. 2014 Dec;30:205-10. doi: 10.1016/j.copbio.2014.07.006. Epub 2014 Aug 24.
6
Advancing metabolic models with kinetic information.
Curr Opin Biotechnol. 2014 Oct;29:8-14. doi: 10.1016/j.copbio.2014.01.015. Epub 2014 Feb 14.
7
Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli.
J Infect Dis. 2014 May 15;209(10):1551-61. doi: 10.1093/infdis/jit800. Epub 2013 Dec 5.
8
FastPros: screening of reaction knockout strategies for metabolic engineering.
Bioinformatics. 2014 Apr 1;30(7):981-7. doi: 10.1093/bioinformatics/btt672. Epub 2013 Nov 19.
9
Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation.
Trends Biotechnol. 2013 May;31(5):313-23. doi: 10.1016/j.tibtech.2013.03.003. Epub 2013 Apr 11.
10
Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host.
Biotechnol Bioeng. 2013 Sep;110(9):2482-93. doi: 10.1002/bit.24920. Epub 2013 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验