Display Materials & Components Research Center, Korea Electronics Technology Institute , 68 Yatap-dong, Bundang-gu, Seongnam 463-816, South Korea.
Display and Nanosystem Laboratory, College of Engineering, Korea University , Seoul 136-713, Korea.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7505-7514. doi: 10.1021/acsami.6b11853. Epub 2017 Feb 14.
One of the most important aspects that we need to consider in the design of intrinsically stretchable electrodes is that most electronic devices that can be formed on them are not stretchable themselves. This discrepancy can induce severe stress singularities at the interfaces between stiff devices and stretchable electrodes, leading to catastrophic device delamination when the substrate is stretched. Here, we suggest a novel solution to this challenge which involves introducing a photolithography-based rigid-island approach to fabricate the heterogeneous configuration of a silver nanowire (AgNW)/polymer composite structure. For this, we designed two new transparent polymers: a photopatternable polymer that is rigid yet flexible, and a stretchable polymer, both of which have identical acrylate functional groups. Patterning of the rigid polymer and subsequent overcoating of the soft polymer formed rigid island disks embedded in the soft polymer, resulting in a selectively stretchable transparent film. Strong covalent bonds instead of weak physical interactions between the polymers strengthened the cohesive force at the interface of the rigid/soft polymers. Inverted-layer processing with a percolated AgNW network was used to form a heterogeneous AgNW/polymer composite structure that can be used as a selectively stretchable transparent electrode. An optimized structural configuration prevented the resistance of the rigid electrode from varying up to a lateral strain of 70%. A repeated stretch/release test with 60% strain for 5000 cycles did not cause any severe damage to the structure, revealing that the fabricated structure was mechanically stable and reliable.
在设计本质上可拉伸电极时,我们需要考虑的最重要的方面之一是,大多数可以在其上形成的电子设备本身并不是可拉伸的。这种差异会在刚性器件和可拉伸电极之间的界面处引起严重的应力奇点,导致基底拉伸时器件灾难性分层。在这里,我们提出了一种新颖的解决方案,涉及引入基于光刻的刚性岛方法来制造银纳米线(AgNW)/聚合物复合材料结构的异质配置。为此,我们设计了两种新型透明聚合物:一种是刚性但灵活的可光图案化聚合物,另一种是可拉伸聚合物,两者都具有相同的丙烯酰基官能团。刚性聚合物的图案化和随后的软聚合物的覆盖形成了刚性岛盘,这些岛盘嵌入在软聚合物中,从而形成了选择性可拉伸的透明薄膜。聚合物之间的强共价键而不是弱物理相互作用增强了刚性/软聚合物界面的内聚力。采用具有渗透 AgNW 网络的反相层处理来形成可作为选择性可拉伸透明电极的异质 AgNW/聚合物复合材料结构。优化的结构配置可防止刚性电极的电阻在 70%的横向应变下发生变化。经过 5000 次 60%应变的重复拉伸/释放测试,结构没有受到任何严重损坏,表明所制造的结构具有机械稳定性和可靠性。