Suppr超能文献

sgRNA评分器2.0:一种预测CRISPR/Cas9活性的不依赖物种的模型。

sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity.

作者信息

Chari Raj, Yeo Nan Cher, Chavez Alejandro, Church George M

机构信息

Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, United States.

Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States.

出版信息

ACS Synth Biol. 2017 May 19;6(5):902-904. doi: 10.1021/acssynbio.6b00343. Epub 2017 Feb 10.

Abstract

It has been possible to create tools to predict single guide RNA (sgRNA) activity in the CRISPR/Cas9 system derived from Streptococcus pyogenes due to the large amount of data that has been generated in sgRNA library screens. However, with the discovery of additional CRISPR systems from different bacteria, which show potent activity in eukaryotic cells, the approach of generating large data sets for each of these systems to predict their activity is not tractable. Here, we present a new guide RNA tool that can predict sgRNA activity across multiple CRISPR systems. In addition to predicting activity for Cas9 from S. pyogenes and Streptococcus thermophilus CRISPR1, we experimentally demonstrate that our algorithm can predict activity for Cas9 from Staphylococcus aureus and S. thermophilus CRISPR3. We also have made available a new version of our software, sgRNA Scorer 2.0, which will allow users to identify sgRNA sites for any PAM sequence of interest.

摘要

由于在sgRNA文库筛选中产生了大量数据,已经能够创建工具来预测源自化脓性链球菌的CRISPR/Cas9系统中单个向导RNA(sgRNA)的活性。然而,随着从不同细菌中发现了其他CRISPR系统,这些系统在真核细胞中显示出强大的活性,为每个系统生成大量数据集以预测其活性的方法并不容易处理。在这里,我们展示了一种新的向导RNA工具,它可以预测多个CRISPR系统中的sgRNA活性。除了预测化脓性链球菌和嗜热链球菌CRISPR1的Cas9活性外,我们还通过实验证明,我们的算法可以预测金黄色葡萄球菌和嗜热链球菌CRISPR3的Cas9活性。我们还提供了软件的新版本sgRNA Scorer 2.0,它将允许用户识别任何感兴趣的PAM序列的sgRNA位点。

相似文献

引用本文的文献

5
From Code to Life: The AI-Driven Revolution in Genome Editing.从代码到生命:基因组编辑中的人工智能驱动革命
Adv Sci (Weinh). 2025 Aug;12(30):e17029. doi: 10.1002/advs.202417029. Epub 2025 Jun 19.
7
Deep Learning Based Models for CRISPR/Cas Off-Target Prediction.基于深度学习的CRISPR/Cas脱靶预测模型
Small Methods. 2025 Jul;9(7):e2500122. doi: 10.1002/smtd.202500122. Epub 2025 Jun 4.

本文引用的文献

1
In vivo high-throughput profiling of CRISPR-Cpf1 activity.体内高通量分析 CRISPR-Cpf1 活性
Nat Methods. 2017 Feb;14(2):153-159. doi: 10.1038/nmeth.4104. Epub 2016 Dec 19.
9
Identification and characterization of essential genes in the human genome.人类基因组中必需基因的鉴定与表征
Science. 2015 Nov 27;350(6264):1096-101. doi: 10.1126/science.aac7041. Epub 2015 Oct 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验