CRISPR-SpyCas9 抑制作用的结构基础:一种抗 CRISPR 蛋白的作用。
Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
机构信息
HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
出版信息
Nature. 2017 Jun 15;546(7658):436-439. doi: 10.1038/nature22377. Epub 2017 Apr 27.
CRISPR-Cas9 systems are bacterial adaptive immune systems that defend against infection by phages. Through the RNA-guided endonuclease activity of Cas9 they degrade double-stranded DNA with a protospacer adjacent motif (PAM) and sequences complementary to the guide RNA. Recently, two anti-CRISPR proteins (AcrIIA2 and AcrIIA4 from Listeria monocytogenes prophages) were identified, both of which inhibit Streptococcus pyogenes Cas9 (SpyCas9) and L. monocytogenes Cas9 activity in bacteria and human cells. However, the mechanism of AcrIIA2- or AcrIIA4-mediated Cas9 inhibition remains unknown. Here we report a crystal structure of SpyCas9 in complex with a single-guide RNA (sgRNA) and AcrIIA4. Our data show that AcrIIA2 and AcrIIA4 interact with SpyCas9 in a sgRNA-dependent manner. The structure reveals that AcrIIA4 inhibits SpyCas9 activity by structurally mimicking the PAM to occupy the PAM-interacting site in the PAM-interacting domain, thereby blocking recognition of double-stranded DNA substrates by SpyCas9. AcrIIA4 further inhibits the endonuclease activity of SpyCas9 by shielding its RuvC active site. Structural comparison reveals that formation of the AcrIIA4-binding site of SpyCas9 is induced by sgRNA binding. Our study reveals the mechanism of SpyCas9 inhibition by AcrIIA4, providing a structural basis for developing 'off-switch' tools for SpyCas9 to avoid unwanted genome edits within cells and tissues.
CRISPR-Cas9 系统是细菌适应性免疫系统,可抵御噬菌体的感染。通过 Cas9 的 RNA 引导内切酶活性,它们降解具有前导间隔相邻基序 (PAM) 和与向导 RNA 互补序列的双链 DNA。最近,两种抗 CRISPR 蛋白(来自李斯特菌噬菌体的 AcrIIA2 和 AcrIIA4)被鉴定出来,它们都抑制化脓性链球菌 Cas9(SpyCas9)和李斯特菌 Cas9 在细菌和人类细胞中的活性。然而,AcrIIA2 或 AcrIIA4 介导的 Cas9 抑制的机制仍不清楚。在这里,我们报告了 SpyCas9 与单指导 RNA(sgRNA)和 AcrIIA4 复合物的晶体结构。我们的数据表明,AcrIIA2 和 AcrIIA4 以 sgRNA 依赖的方式与 SpyCas9 相互作用。该结构表明,AcrIIA4 通过结构模拟 PAM 来占据 PAM 相互作用域中的 PAM 相互作用位点,从而阻止 SpyCas9 对双链 DNA 底物的识别,从而抑制 SpyCas9 的活性。AcrIIA4 通过屏蔽其 RuvC 活性位点进一步抑制 SpyCas9 的内切酶活性。结构比较表明,sgRNA 结合诱导了 SpyCas9 的 AcrIIA4 结合位点的形成。我们的研究揭示了 AcrIIA4 抑制 SpyCas9 的机制,为开发 SpyCas9 的“关闭开关”工具提供了结构基础,以避免细胞和组织内不必要的基因组编辑。