Suppr超能文献

具有混合策略的人工根系觅食优化算法

Artificial root foraging optimizer algorithm with hybrid strategies.

作者信息

Liu Yang, Liu Junfei, Ma Lianbo, Tian Liwei

机构信息

Shenyang University, 110044 Shenyang, China; Peking University, 100871 Beijing, China.

Peking University, 100871 Beijing, China.

出版信息

Saudi J Biol Sci. 2017 Feb;24(2):268-275. doi: 10.1016/j.sjbs.2016.09.013. Epub 2016 Sep 12.

Abstract

In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO) is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.

摘要

在这项工作中,提出了一种新的受植物启发的优化算法,即混合人工根系觅食优化算法(HARFO),它模仿复杂优化中的迭代根系觅食行为。在HARFO模型中,开发了两种创新策略:一种是根与根通信策略,它使个体能够在不同的高效拓扑结构中相互交换信息,这可以从本质上提高探索能力;另一种是协同进化策略,它可以构建由多个子种群的进化压力驱动的分层空间种群,确保根系种群的多样性得到良好维持。所提出的算法在精心设计的测试函数集上与四种经典进化算法进行了基准测试,这些测试函数集包括经典测试函数和组合测试函数。通过严格的性能分析,所有这些测试都突出了显著的性能提升,比较结果显示了所提出算法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5c/5272963/c5f994097aff/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验