Liu Yang, Liu Junfei, Ma Lianbo, Tian Liwei
Shenyang University, 110044 Shenyang, China; Peking University, 100871 Beijing, China.
Peking University, 100871 Beijing, China.
Saudi J Biol Sci. 2017 Feb;24(2):268-275. doi: 10.1016/j.sjbs.2016.09.013. Epub 2016 Sep 12.
In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO) is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.
在这项工作中,提出了一种新的受植物启发的优化算法,即混合人工根系觅食优化算法(HARFO),它模仿复杂优化中的迭代根系觅食行为。在HARFO模型中,开发了两种创新策略:一种是根与根通信策略,它使个体能够在不同的高效拓扑结构中相互交换信息,这可以从本质上提高探索能力;另一种是协同进化策略,它可以构建由多个子种群的进化压力驱动的分层空间种群,确保根系种群的多样性得到良好维持。所提出的算法在精心设计的测试函数集上与四种经典进化算法进行了基准测试,这些测试函数集包括经典测试函数和组合测试函数。通过严格的性能分析,所有这些测试都突出了显著的性能提升,比较结果显示了所提出算法的优越性。