Wang Qinghua, Ross Karen E, Huang Hongzhan, Ren Jia, Li Gang, Vijay-Shanker K, Wu Cathy H, Arighi Cecilia N
Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE, 19711, USA.
Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19711, USA.
Methods Mol Biol. 2017;1558:213-232. doi: 10.1007/978-1-4939-6783-4_10.
Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.
翻译后修饰(PTMs)是蛋白质组学领域中蛋白质异构体多样性的主要贡献因素之一。特别是,蛋白质磷酸化是一种重要的调节机制,在许多生物过程中发挥作用。蛋白质激酶作为催化此反应的酶,是代谢和信号通路的关键参与者。它们的激活或失活决定了下游事件:哪些底物被修饰以及它们随后产生的影响(例如,激活状态、定位、蛋白质-蛋白质相互作用(PPI))。生物医学文献仍然是蛋白质磷酸化实验信息的主要证据来源。将磷酸化事件和磷酸化依赖性PPI整合在一起的自动化方法有助于总结当前知识并揭示潜在联系。在本章中,我们展示了两种文本挖掘工具,RLIMS-P和eFIP,用于从文献中检索和提取激酶-底物-位点数据以及磷酸化依赖性PPI。与在PubMed中进行文献搜索相比,这些工具具有多个优势,因为它们的结果针对磷酸化具有特异性。RLIMS-P和eFIP的结果可以通过多种方式进行排序、组织和查看,以回答相关的生物学问题,并且蛋白质提及与UniProt标识符相关联。