Huang Chung-Chi, Lu Zhiyong
Brief Bioinform. 2016 Jan;17(1):132-44. doi: 10.1093/bib/bbv024. Epub 2015 May 1.
One effective way to improve the state of the art is through competitions. Following the success of the Critical Assessment of protein Structure Prediction (CASP) in bioinformatics research, a number of challenge evaluations have been organized by the text-mining research community to assess and advance natural language processing (NLP) research for biomedicine. In this article, we review the different community challenge evaluations held from 2002 to 2014 and their respective tasks. Furthermore, we examine these challenge tasks through their targeted problems in NLP research and biomedical applications, respectively. Next, we describe the general workflow of organizing a Biomedical NLP (BioNLP) challenge and involved stakeholders (task organizers, task data producers, task participants and end users). Finally, we summarize the impact and contributions by taking into account different BioNLP challenges as a whole, followed by a discussion of their limitations and difficulties. We conclude with future trends in BioNLP challenge evaluations.
提高现有技术水平的一种有效方法是通过竞赛。继生物信息学研究中的蛋白质结构预测关键评估(CASP)取得成功之后,文本挖掘研究社区组织了多项挑战评估,以评估和推进生物医学领域的自然语言处理(NLP)研究。在本文中,我们回顾了2002年至2014年期间举办的不同社区挑战评估及其各自的任务。此外,我们分别通过NLP研究和生物医学应用中的目标问题来审视这些挑战任务。接下来,我们描述组织生物医学NLP(BioNLP)挑战的一般工作流程以及相关利益者(任务组织者、任务数据生产者、任务参与者和最终用户)。最后,我们从整体上考虑不同的BioNLP挑战,总结其影响和贡献,随后讨论其局限性和困难。我们以BioNLP挑战评估的未来趋势作为结论。