Suppr超能文献

十年来生物医学文本挖掘中的社区挑战:成功、失败与未来。

Community challenges in biomedical text mining over 10 years: success, failure and the future.

作者信息

Huang Chung-Chi, Lu Zhiyong

出版信息

Brief Bioinform. 2016 Jan;17(1):132-44. doi: 10.1093/bib/bbv024. Epub 2015 May 1.

Abstract

One effective way to improve the state of the art is through competitions. Following the success of the Critical Assessment of protein Structure Prediction (CASP) in bioinformatics research, a number of challenge evaluations have been organized by the text-mining research community to assess and advance natural language processing (NLP) research for biomedicine. In this article, we review the different community challenge evaluations held from 2002 to 2014 and their respective tasks. Furthermore, we examine these challenge tasks through their targeted problems in NLP research and biomedical applications, respectively. Next, we describe the general workflow of organizing a Biomedical NLP (BioNLP) challenge and involved stakeholders (task organizers, task data producers, task participants and end users). Finally, we summarize the impact and contributions by taking into account different BioNLP challenges as a whole, followed by a discussion of their limitations and difficulties. We conclude with future trends in BioNLP challenge evaluations.

摘要

提高现有技术水平的一种有效方法是通过竞赛。继生物信息学研究中的蛋白质结构预测关键评估(CASP)取得成功之后,文本挖掘研究社区组织了多项挑战评估,以评估和推进生物医学领域的自然语言处理(NLP)研究。在本文中,我们回顾了2002年至2014年期间举办的不同社区挑战评估及其各自的任务。此外,我们分别通过NLP研究和生物医学应用中的目标问题来审视这些挑战任务。接下来,我们描述组织生物医学NLP(BioNLP)挑战的一般工作流程以及相关利益者(任务组织者、任务数据生产者、任务参与者和最终用户)。最后,我们从整体上考虑不同的BioNLP挑战,总结其影响和贡献,随后讨论其局限性和困难。我们以BioNLP挑战评估的未来趋势作为结论。

相似文献

3
Survey of Natural Language Processing Techniques in Bioinformatics.生物信息学中的自然语言处理技术综述
Comput Math Methods Med. 2015;2015:674296. doi: 10.1155/2015/674296. Epub 2015 Oct 7.
6
Advancing Chinese biomedical text mining with community challenges.推动中文生物医学文本挖掘的社区挑战。
J Biomed Inform. 2024 Sep;157:104716. doi: 10.1016/j.jbi.2024.104716. Epub 2024 Aug 27.
7
Extracting biomedical events from pairs of text entities.从文本实体对中提取生物医学事件。
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S8. doi: 10.1186/1471-2105-16-S10-S8. Epub 2015 Jul 13.

引用本文的文献

本文引用的文献

1
tmChem: a high performance approach for chemical named entity recognition and normalization.tmChem:一种用于化学命名实体识别和标准化的高性能方法。
J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3. doi: 10.1186/1758-2946-7-S1-S3. eCollection 2015.
2
The CHEMDNER corpus of chemicals and drugs and its annotation principles.CHEMDNER 化学物质和药物语料库及其标注原则。
J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S2. doi: 10.1186/1758-2946-7-S1-S2. eCollection 2015.
3
Scaling drug indication curation through crowdsourcing.通过众包扩大药物适应症整理规模。
Database (Oxford). 2015 Mar 22;2015. doi: 10.1093/database/bav016. Print 2015.
5
LabeledIn: cataloging labeled indications for human drugs.领英:编目人用药品的标记适应症。
J Biomed Inform. 2014 Dec;52:448-56. doi: 10.1016/j.jbi.2014.08.004. Epub 2014 Aug 23.
6
Overview of the gene ontology task at BioCreative IV.生物创意IV基因本体任务概述。
Database (Oxford). 2014 Aug 25;2014. doi: 10.1093/database/bau086. Print 2014.
9
BioC interoperability track overview.生物信息学互操作性赛道概述。
Database (Oxford). 2014 Jun 30;2014. doi: 10.1093/database/bau053. Print 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验