Suppr超能文献

基于连接强度加权稀疏组表示的脑网络构建用于轻度认知障碍分类

Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification.

作者信息

Yu Renping, Zhang Han, An Le, Chen Xiaobo, Wei Zhihui, Shen Dinggang

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Hum Brain Mapp. 2017 May;38(5):2370-2383. doi: 10.1002/hbm.23524. Epub 2017 Feb 2.

Abstract

Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc.

摘要

脑功能网络分析在理解脑功能以及识别脑部疾病(如阿尔茨海默病(AD)及其早期阶段轻度认知障碍(MCI))的生物标志物方面已显示出巨大潜力。在这些应用中,准确构建具有生物学意义的脑网络至关重要。稀疏学习已被广泛用于脑网络构建;然而,其 l -范数惩罚只是平等地惩罚脑网络的每条边,而没有考虑原始连接强度,而原始连接强度是最重要的固有链路特征之一。此外,基于链路连接性的相似性,脑网络呈现出显著的组结构(即一组共享相似属性的边)。在本文中,我们提出了一种具有“连接强度加权稀疏组约束”的新型脑功能网络建模框架。特别是,通过同时考虑原始连接强度及其组结构,可以优化网络建模,而不会失去稀疏性的优点。我们提出的方法应用于MCI分类,这是早期AD诊断的一项具有挑战性的任务。基于静息态功能磁共振成像对来自50名MCI患者和49名健康对照的实验结果表明,我们提出的方法比其他竞争方法(如稀疏表示,准确率 = 65.6%)更有效(即实现了显著更高的分类准确率,84.8%)。对信息特征的事后检验进一步表明,我们提出的方法获得了更具生物学意义的脑功能连接。《人类大脑图谱》38:2370 - 2383,2017年。© 2017威利期刊公司。

相似文献

2
6
Brain connectivity hyper-network for MCI classification.用于轻度认知障碍分类的脑连接超网络
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):724-32. doi: 10.1007/978-3-319-10470-6_90.
7
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.

引用本文的文献

本文引用的文献

4
The connectomics of brain disorders.脑疾病的连接组学
Nat Rev Neurosci. 2015 Mar;16(3):159-72. doi: 10.1038/nrn3901.
5
Sparse network-based models for patient classification using fMRI.基于稀疏网络的功能磁共振成像患者分类模型
Neuroimage. 2015 Jan 15;105:493-506. doi: 10.1016/j.neuroimage.2014.11.021. Epub 2014 Nov 15.
6
Machine Learning in Medical Imaging.医学成像中的机器学习
IEEE Signal Process Mag. 2010 Jul;27(4):25-38. doi: 10.1109/MSP.2010.936730.
7
Sparse subspace clustering: algorithm, theory, and applications.稀疏子空间聚类:算法、理论与应用。
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2765-81. doi: 10.1109/TPAMI.2013.57.
10
Functional network organization of the human brain.人类大脑的功能网络组织。
Neuron. 2011 Nov 17;72(4):665-78. doi: 10.1016/j.neuron.2011.09.006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验