Casas-Roma Jordi, Martinez-Heras Eloy, Solé-Ribalta Albert, Solana Elisabeth, Lopez-Soley Elisabet, Vivó Francesc, Diaz-Hurtado Marcos, Alba-Arbalat Salut, Sepulveda Maria, Blanco Yolanda, Saiz Albert, Borge-Holthoefer Javier, Llufriu Sara, Prados Ferran
e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain.
Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.
Netw Neurosci. 2022 Jul 1;6(3):916-933. doi: 10.1162/netn_a_00258. eCollection 2022 Jul.
In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified.
近年来,应用于磁共振成像(MRI)数据的网络分析研究取得了显著进展。然而,大多数研究仅限于从静息态功能磁共振成像(fMRI)、扩散张量成像(DTI)或从T1图像得出的灰质概率图中获得的单一网络。尽管之前有少数研究将其中两个网络进行了结合,但尚无研究引入一个框架来整合形态学、结构和功能性脑连接网络。本研究的目的是整合形态学、结构和功能信息,从而定义一种新的多层网络视角。事实证明,在使用图挖掘技术同时联合分析来自同一对象的多种关系数据时,这种视角具有优势。本研究的主要贡献在于设计、开发并验证了一个框架,该框架将这三层信息合并为一个多层网络,将白质连接的完整性与灰质概率图以及静息态fMRI联系起来。为了验证我们的框架,我们对图论中的几个指标进行了扩展并使其适用于我们特定的领域特征。这一概念验证应用于一组多发性硬化症患者,结果表明可以识别出几个连接同步恶化的脑区。