Bundesanstalt für Materialforschung und Prüfung (BAM) , Unter den Eichen 87, 12205 Berlin, Germany.
Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin , Straße des 17, Juni 124, 10623 Berlin, Germany.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7535-7546. doi: 10.1021/acsami.6b14404. Epub 2017 Feb 15.
A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of poly(vinyl methyl ether) (PVME) (thicknesses: 7-160 nm). For the BDS measurements, a recently designed nanostructured electrode system is employed. A thin film is spin-coated on an ultraflat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with nonconducting nanostructured SiO nanospacers with heights of 35 or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincides in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films.
采用纳米介电弛豫(BDS)和热光谱(SHS)相结合的方法对聚(甲基乙烯基醚)(PVME)薄膜(厚度:7-160nm)的动力学进行了表征。对于 BDS 测量,采用了最近设计的纳米结构电极系统。将薄膜旋涂在作为底电极的超平整高导电性硅晶片上。作为顶电极,在底电极上组装具有非导电纳米结构 SiO 纳米间隔物(高度为 35 或 70nm)的高导电性晶片。该程序导致具有自由聚合物/空气界面的薄支撑膜。BDS 测量显示出两个弛豫过程,对于厚度小于 50nm 的薄膜可以明确地进行分析。两个过程的弛豫速率具有不同的温度依赖性。一个过程与块状 PVME 的玻璃动力学在位置和温度依赖性上重合,归因于薄膜中间类似块状层的动态玻璃化转变。通过 SHS 证实,弛豫速率与厚度无关。出乎意料的是,第二个过程的弛豫速率遵循阿伦尼乌斯型温度依赖性。SHS 未观察到该过程,它与在具有不均匀结构的基底上不可逆吸附的层中的约束波动有关。其分子波动经历了约束效应,导致了分子动力学的局部化。据我们所知,这是关于薄膜中吸附层分子动力学的第一个报告。