Suppr超能文献

支撑超薄聚合物薄膜中的界面动力学——从固体到自由界面

Interfacial Dynamics in Supported Ultrathin Polymer Films-From the Solid to the Free Interface.

作者信息

Mapesa Emmanuel Urandu, Shahidi Nobahar, Kremer Friedrich, Doxastakis Manolis, Sangoro Joshua

机构信息

Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, 1512 Middle Drive, Knoxville, Tennessee 37996, United States.

Department of Molecular Physics, Peter Debye Institute of Soft Matter Physics, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany.

出版信息

J Phys Chem Lett. 2021 Jan 14;12(1):117-125. doi: 10.1021/acs.jpclett.0c03211. Epub 2020 Dec 14.

Abstract

Molecular dynamics in ultrathin layers is investigated using nanostructured electrodes to perform broadband dielectric spectroscopy measurements, and by atomistic molecular dynamics simulations. Using poly(vinyl acetate) as the model system and taking advantage of access to the distribution of relaxation times in an extended temperature range above the glass transition temperature, , we demonstrate that while the mean rates of the segmental relaxation remain bulklike down to 12 nm film thickness, modified molecular mobilities arise in the interfacial zones. Combining results from simulations and experiments, we show unambiguously that both the slow relaxations arising from adsorbed polymer segments and the faster modes attributed to segments in the vicinity of the free interface have non-Arrhenius temperature activation. These interfacial regions span thicknesses of ∼1.5 nm each just above the calorimetric independent of molecular weight and film thickness. These deviations at interfaces are relevant for applications of polymers in adhesion, coatings, and polymer nanocomposites.

摘要

利用纳米结构电极进行宽带介电谱测量,并通过原子分子动力学模拟,对超薄层中的分子动力学进行了研究。以聚醋酸乙烯酯为模型体系,并利用在高于玻璃化转变温度的扩展温度范围内获取弛豫时间分布的优势,我们证明,虽然链段弛豫的平均速率在薄膜厚度低至12 nm时仍保持类似本体的状态,但在界面区域会出现改性的分子迁移率。结合模拟和实验结果,我们明确表明,由吸附的聚合物链段引起的缓慢弛豫和归因于自由界面附近链段的较快模式均具有非阿累尼乌斯温度活化。这些界面区域在高于量热玻璃化转变温度时各自跨越约1.5 nm的厚度,与分子量和薄膜厚度无关。界面处的这些偏差与聚合物在粘附、涂层和聚合物纳米复合材料中的应用相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验