Université de Lyon, CNRS, Université Claude Bernard Lyon1, Ens de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France.
J Phys Chem B. 2017 Mar 2;121(8):1812-1823. doi: 10.1021/acs.jpcb.6b11703. Epub 2017 Feb 15.
Rotational diffusion (D) is a fundamental property of biomolecules that contains information about molecular dimensions and solute-solvent interactions. While ab initio D prediction can be achieved by explicit all-atom molecular dynamics simulations, this is hindered by both computational expense and limitations in water models. We propose coarse-grained force fields as a complementary solution, and show that the MARTINI force field with elastic networks is sufficient to compute D in >10 proteins spanning 5-157 kDa. We also adopt a quaternion-based approach that computes D orientation directly from autocorrelations of best-fit rotations as used in, e.g., RMSD algorithms. Over 2 μs trajectories, isotropic MARTINI+EN tumbling replicates experimental values to within 10-20%, with convergence analyses suggesting a minimum sampling of >50 × τ to achieve sufficient precision. Transient fluctuations in anisotropic tumbling cause decreased precision in predictions of axisymmetric anisotropy and rhombicity, the latter of which cannot be precisely evaluated within 2000 × τ for GB3. Thus, we encourage reporting of axial decompositions D, D, D to ease comparability between experiment and simulation. Where protein disorder is absent, we observe close replication of MARTINI+EN D orientations versus CHARMM22*/TIP3p and experimental data. This work anticipates the ab initio prediction of NMR-relaxation by combining coarse-grained global motions with all-atom local motions.
旋转扩散(D)是生物分子的基本属性,包含有关分子尺寸和溶质-溶剂相互作用的信息。虽然可以通过显式全原子分子动力学模拟来实现从头预测 D,但这受到计算成本和水模型限制的阻碍。我们提出了粗粒度力场作为一种补充解决方案,并表明具有弹性网络的 MARTINI 力场足以计算跨越 5-157 kDa 的 10 多种蛋白质中的 D。我们还采用了基于四元数的方法,该方法可以根据最佳拟合旋转的自相关直接计算 D 方向,例如 RMSD 算法中使用的方法。在超过 2 μs 的轨迹中,各向同性的 MARTINI+EN 翻滚复制实验值的精度在 10-20%以内,收敛分析表明,为了达到足够的精度,采样至少需要 >50×τ。各向异性翻滚中的瞬态波动导致轴对称各向异性和菱形度预测的精度降低,对于 GB3,在 2000×τ 内无法精确评估后者。因此,我们鼓励报告轴向分解 D、D、D,以方便实验和模拟之间的可比性。在不存在蛋白质无序的情况下,我们观察到 MARTINI+EN D 方向与 CHARMM22*/TIP3p 和实验数据的紧密复制。这项工作通过将粗粒度的全局运动与全原子的局部运动相结合,预计可以实现 NMR 弛豫的从头预测。