León Alejandra, Del-Ángel Mayela, Ávila José Luis, Delgado Guillermo
Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
Prog Chem Org Nat Prod. 2017;104:127-246. doi: 10.1007/978-3-319-45618-8_2.
Phthalides are a relatively small group of natural compounds confined to several plant families and some genera of fungi and liverworts. They are divided into two structural groups, the monomeric and dimeric phthalides, and known mainly as bioactive constituents of different plant species used traditionally for medicinal purposes in Asia, Europe, and North America.The first reports on the chemistry of phthalides appeared at the end of the nineteenth century, in which they were identified as the odor constituents of the essential oil of celery (Apium graveolens) by Ciamician and Silber (1897). In the first half of the last century, phthalides were isolated from Cnidium officinale and Ligusticum acutilobum, species widely used in Asian traditional medicine, and from Levisticum officinale, a species used as food and condiment. Throughout the second part of the twentieth century, phthalides have been characterized from several plant families, namely Asteraceae, Leguminosae, Orchidaceae and Rutaceae, among others, but mainly from the Umbelliferae (syn Apiaceae) family, and the major contributors have been the following species used in traditional medicine: Ligusticum chuanxiong (Chinese name: Chuanxiong), Angelica sinensis (Chinese name: Danggui), Cnidium officinale (Japanese name: Senkyu), Angelica acutiloba (Japanese name: Toki), and Ligusticum porteri (Hispanic name: Oshá). Phthalides are also constituents of several genera of fungi, such as Penicillium, Alternaria and Pestalotiopsis, and some liverworts.Different chromatographic, spectrometric, and two-dimensional nuclear magnetic resonance (NMR) techniques have been used for the isolation and structural characterization of phthalides in extracts, and for assessing the quality of plant material containing this type of compound. Isotopic labeling has established the biosynthesis of phthalides via linkage of acetate units forming polyketide intermediates.Chemical transformations of monomeric phthalides have included oxidation, reduction, addition, elimination, and cycloaddition reactions, and treatments with Lewis acids of (Z)-ligustilide have afforded linear dimers. Some intramolecular condensations and differentiated cyclizations of the dimeric phthalides have been carried out, providing evidences for the particular chemical reactivity of these compounds.Several structural modifications of phthalides have been carried out subjecting them to microbial transformations by different species of bacteria, fungi and algae, and these included resolutions of racemic mixtures and oxidations, among others.The [π4s + π2s] and [π2s + π2s] cycloadditions of (Z)-ligustilide for the synthesis of dimeric phthalides have been reported, and different approaches involving cyclizations, Alder-Rickert reactions, Sharpless asymmetric hydroxylations, or Grignard additions have been used for the synthesis of monomeric phthalides. The use of phthalides as building blocks for divergent oriented synthesis has been proven.Many of the naturally occurring phthalides display different biological activities including antibacterial, antifungal, insecticidal, cytotoxic, and anti-inflammatory effects, among many others, with a considerable recent research on the topic. In the case of compounds isolated from the Apiaceae, the bioactivities correlate with the traditional medicinal uses of the natural sources. Some monomeric phthalides have shown their ability to attenuate certain neurological diseases, including stroke, Alzheimer's and Parkinson's diseases.The present contribution covers the distribution of phthalides in nature and the findings in the structural diversity, chemical reactivity, biotransformations, syntheses, and bioactivity of natural and semisynthetic phthalides.
苯酞是一类相对较小的天然化合物,仅限于几个植物科以及一些真菌和地钱属。它们分为两个结构组,即单体苯酞和二聚体苯酞,主要作为亚洲、欧洲和北美传统药用的不同植物物种的生物活性成分为人所知。关于苯酞化学的最早报道出现在19世纪末,其中Ciamician和Silber(1897年)将它们鉴定为芹菜(Apium graveolens)精油的气味成分。在上个世纪上半叶,从亚洲传统医学中广泛使用的物种蛇床子(Cnidium officinale)和藁本(Ligusticum acutilobum)以及用作食物和调味品的物种欧当归(Levisticum officinale)中分离出了苯酞。在20世纪的后半叶,已从几个植物科中鉴定出苯酞,即菊科、豆科、兰科和芸香科等,但主要来自伞形科(同义词:伞形科),主要贡献物种是以下传统医学中使用的物种:川芎(Ligusticum chuanxiong,中文名:川芎)、当归(Angelica sinensis,中文名:当归)、蛇床子(Cnidium officinale,日文名:川芎)、东当归(Angelica acutiloba,日文名:当帰)和波特氏藁本(Ligusticum porteri,西班牙名:奥夏)。苯酞也是几种真菌属的成分,如青霉属、链格孢属和盘多毛孢属,以及一些地钱。
已使用不同的色谱、光谱和二维核磁共振(NMR)技术对提取物中的苯酞进行分离和结构表征,并评估含有此类化合物的植物材料的质量。同位素标记已确定通过形成聚酮中间体的乙酸酯单元的连接来生物合成苯酞。单体苯酞的化学转化包括氧化、还原、加成、消除和环加成反应,用路易斯酸处理(Z)-藁本内酯可得到线性二聚体。已对二聚体苯酞进行了一些分子内缩合和差异环化反应,为这些化合物的特殊化学反应性提供了证据。
已通过不同种类的细菌、真菌和藻类对苯酞进行微生物转化,对其进行了几种结构修饰,其中包括外消旋混合物的拆分和氧化等。已报道了(Z)-藁本内酯用于合成二聚体苯酞的[π4s + π2s]和[π2s + π2s]环加成反应,并且已使用涉及环化、阿尔德-里克特反应、夏普莱斯不对称羟基化或格氏加成的不同方法来合成单体苯酞。已证明使用苯酞作为发散定向合成的构建块。
许多天然存在的苯酞具有不同的生物活性,包括抗菌、抗真菌、杀虫、细胞毒性和抗炎作用等,最近对该主题进行了大量研究。就从伞形科分离出的化合物而言,其生物活性与天然来源的传统药用用途相关。一些单体苯酞已显示出减轻某些神经疾病的能力,包括中风、阿尔茨海默病和帕金森病。
本论文涵盖了苯酞在自然界中的分布以及天然和半合成苯酞在结构多样性、化学反应性、生物转化、合成和生物活性方面的研究结果。