Suppr超能文献

温度依赖性热塑性纳米复合材料的表面纳米力学性能。

Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite.

机构信息

Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; KTH Royal Institute of Technology, School of Chemical Sciences and Engineering, Department of Chemistry, Surface and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden.

KTH Royal Institute of Technology, School of Chemical Sciences and Engineering, Department of Chemistry, Surface and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden.

出版信息

J Colloid Interface Sci. 2017 May 15;494:204-214. doi: 10.1016/j.jcis.2017.01.096. Epub 2017 Jan 25.

Abstract

In polymer nanocomposites, particle-polymer interactions influence the properties of the matrix polymer next to the particle surface, providing different physicochemical properties than in the bulk matrix. This region is often referred to as the interphase, but detailed characterization of its properties remains a challenge. Here we employ two atomic force microscopy (AFM) force methods, differing by a factor of about 15 in probing rate, to directly measure the surface nanomechanical properties of the transition region between filler particle and matrix over a controlled temperature range. The nanocomposite consists of poly(ethyl methacrylate) (PEMA) and poly(isobutyl methacrylate) (PiBMA) with a high concentration of hydrophobized silica nanoparticles. Both AFM methods demonstrate that the interphase region around a 40-nm-sized particle located on the surface of the nanocomposite could extend to 55-70nm, and the interphase exhibits a gradient distribution in surface nanomechanical properties. However, the slower probing rate provides somewhat lower numerical values for the surface stiffness. The analysis of the local glass transition temperature (T) of the interphase and the polymer matrix provides evidence for reduced stiffness of the polymer matrix at high particle concentration, a feature that we attribute to selective adsorption. These findings provide new insight into understanding the microstructure and mechanical properties of nanocomposites, which is of importance for designing nanomaterials.

摘要

在聚合物纳米复合材料中,颗粒-聚合物相互作用会影响颗粒表面附近基体聚合物的性质,使其具有不同于基体的物理化学性质。这一区域通常被称为界面相,但对其性质的详细表征仍然是一个挑战。在这里,我们使用两种原子力显微镜(AFM)力方法,通过探测速率的差异约为 15 倍,在受控温度范围内直接测量填充颗粒和基体之间过渡区域的表面纳米力学性质。该纳米复合材料由聚(甲基丙烯酸乙酯)(PEMA)和聚(异丁基甲基丙烯酸酯)(PiBMA)组成,其中含有高浓度的疏水化二氧化硅纳米颗粒。两种 AFM 方法均表明,位于纳米复合材料表面的 40nm 大小颗粒周围的界面区域可以扩展到 55-70nm,并且界面相表现出表面纳米力学性质的梯度分布。然而,较慢的探测速率会导致表面硬度的数值略低。对界面和聚合物基体局部玻璃化转变温度(T)的分析为高颗粒浓度下聚合物基体刚度降低提供了证据,我们将这一特性归因于选择性吸附。这些发现为理解纳米复合材料的微观结构和力学性质提供了新的见解,这对于设计纳米材料至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验