Pihan Sascha A, Emmerling Sebastian G J, Butt Hans-Jürgen, Berger Rüdiger, Gutmann Jochen S
†Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
‡Johannes Gutenberg Universität Mainz, Saarstrasse 21, D-55128 Mainz, Germany.
ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12380-6. doi: 10.1021/am507572q. Epub 2015 Mar 27.
We report measurements of structure, mechanical properties, glass transition temperature, and contact angle of a novel nanocomposite material consisting of swellable silsesquioxane nanoparticles with grafted poly(ethyl methacrylate) (PEMA) brushes and PEMA matrices with varying molecular weight. We measured the interparticle distance at the surface of the composites using scanning probe microscopy (SPM) and in the bulk of ∼0.5 μm thick films by grazing incidence small angle X-ray scattering (GISAXS). For a given molecular weight of the brush unstable dispersions at high molecular weight of the matrix indicate an intrinsic incompatibility between polymer-grafted-nanoparticles and homopolymer matrices. This incompatibility is affirmed by a high contact angle between the polymer-grafted-nanoparticles and the high molecular weight matrix as measured by SPM. For unstable dispersions, we measured a decreased glass transition temperature along with a decreased plateau modulus by dynamic mechanical thermal analysis (DMTA) which indicates the formation of a liquid-like layer at the brush-matrix interface. This proves the ability to decouple the structural and mechanical properties from the potential to be swollen with small molecules. It opens a new area of use of these soft nanocomposites as slow release materials with tailored mechanical properties.
我们报告了一种新型纳米复合材料的结构、力学性能、玻璃化转变温度和接触角的测量结果,该复合材料由接枝了聚(甲基丙烯酸乙酯)(PEMA)刷的可膨胀倍半硅氧烷纳米颗粒和不同分子量的PEMA基体组成。我们使用扫描探针显微镜(SPM)测量了复合材料表面的颗粒间距离,并通过掠入射小角X射线散射(GISAXS)测量了约0.5μm厚薄膜整体中的颗粒间距离。对于给定的刷分子量,在基体高分子量下的不稳定分散体表明聚合物接枝纳米颗粒与均聚物基体之间存在内在不相容性。通过SPM测量,聚合物接枝纳米颗粒与高分子量基体之间的高接触角证实了这种不相容性。对于不稳定分散体,我们通过动态力学热分析(DMTA)测量了玻璃化转变温度的降低以及平台模量的降低,这表明在刷-基体界面形成了类似液体的层。这证明了能够将结构和力学性能与小分子溶胀潜力解耦。它开辟了这些软纳米复合材料作为具有定制力学性能的缓释材料的新应用领域。