Malavé Veruska, Killgore J P, Garboczi E J
Applied Chemicals and Materials Division, National Institute of Standards and Technology. Boulder, CO 80305, United States of America.
Nanotechnology. 2019 Jul 12;30(28):285703. doi: 10.1088/1361-6528/ab10b1. Epub 2019 Mar 18.
Novel material properties can be attained when embedding three-dimensional (3D) nanoparticles (NPs) in a variety of polymeric matrices. These inhomogeneities influence the bulk mechanical response due to the local high modulus mismatch between the particles and the matrix. The degree of the mechanical mismatch that is seen near a composite surface depends on the geometry/shape and spatial location and orientation of the particle with respect to the external contact loading. Isolating each particle's contribution to the surrounding elastic field can be numerically discerned but is experimentally complex, as there are limited direct characterization approaches available at the nanoscale. Atomic force microscopy (AFM) instrumentation is one such method that can quantify subsurface particle stiffness effects on nanocomposites with a resolution of a few nanometers. This work studies the spatial and geometrical effects of subsurface silver NPs on the local composite stiffness of a polystyrene matrix using 3D finite element (FE) models to interpret contact resonance (CR) AFM measurements. The present FE-AFM findings suggest both particle shape and particle orientation have a significant role in the degree of uniformity of the stiffness distribution in the embedding matrix. The applied CR-AFM technique shows that the NP geometry can be clearly distinguished when such inhomogeneities are relatively close, 17 nm, to a free surface whereas material-interface measurements at deeper subsurfaces are obscured by experimental noise. This work demonstrates that (i) numerical solutions can assist in qualitatively elucidating nanoinstrumentation stiffness profiles in terms of particle shape and orientation and (ii) CR-AFM measurements can quantify the influence of particle geometry and orientation on the surface nanomechanics of nanocomposite materials.
将三维(3D)纳米颗粒(NP)嵌入各种聚合物基体中时,可以获得新颖的材料特性。由于颗粒与基体之间存在局部高模量失配,这些不均匀性会影响整体力学响应。在复合材料表面附近观察到的力学失配程度取决于颗粒相对于外部接触载荷的几何形状/形状、空间位置和取向。可以通过数值方法辨别每个颗粒对周围弹性场的贡献,但实验上很复杂,因为在纳米尺度上可用的直接表征方法有限。原子力显微镜(AFM)仪器就是这样一种方法,它可以以几纳米的分辨率量化纳米复合材料中亚表面颗粒刚度效应。这项工作使用3D有限元(FE)模型来解释接触共振(CR)AFM测量结果,研究了亚表面银NP对聚苯乙烯基体局部复合材料刚度的空间和几何效应。目前的FE-AFM研究结果表明,颗粒形状和颗粒取向在嵌入基体中刚度分布的均匀程度方面都起着重要作用。应用的CR-AFM技术表明,当这种不均匀性相对靠近自由表面17nm时,可以清楚地分辨出NP的几何形状,而在更深亚表面的材料界面测量会被实验噪声掩盖。这项工作表明:(i)数值解可以在定性上根据颗粒形状和取向阐明纳米仪器的刚度分布,(ii)CR-AFM测量可以量化颗粒几何形状和取向对纳米复合材料表面纳米力学的影响。