McDonald Seth, Block Andrew, Beaucourt Stéphanie, Moratorio Gonzalo, Vignuzzi Marco, Peersen Olve B
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523.
Institut Pasteur, CNRS UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
J Biol Chem. 2016 Jul 1;291(27):13999-14011. doi: 10.1074/jbc.M116.726596. Epub 2016 May 2.
Positive strand RNA viruses replicate via a virally encoded RNA-dependent RNA polymerase (RdRP) that uses a unique palm domain active site closure mechanism to establish the canonical two-metal geometry needed for catalysis. This mechanism allows these viruses to evolutionarily fine-tune their replication fidelity to create an appropriate distribution of genetic variants known as a quasispecies. Prior work has shown that mutations in conserved motif A drastically alter RdRP fidelity, which can be either increased or decreased depending on the viral polymerase background. In the work presented here, we extend these studies to motif D, a region that forms the outer edge of the NTP entry channel where it may act as a nucleotide sensor to trigger active site closure. Crystallography, stopped-flow kinetics, quench-flow reactions, and infectious virus studies were used to characterize 15 engineered mutations in coxsackievirus B3 polymerase. Mutations that interfere with the transport of the metal A Mg(2+) ion into the active site had only minor effects on RdRP function, but the stacking interaction between Phe(364) and Pro(357), which is absolutely conserved in enteroviral polymerases, was found to be critical for processive elongation and virus growth. Mutating Phe(364) to tryptophan resulted in a genetically stable high fidelity virus variant with significantly reduced pathogenesis in mice. The data further illustrate the importance of the palm domain movement for RdRP active site closure and demonstrate that protein engineering can be used to alter viral polymerase function and attenuate virus growth and pathogenesis.
正链RNA病毒通过病毒编码的RNA依赖性RNA聚合酶(RdRP)进行复制,该聚合酶利用独特的手掌结构域活性位点闭合机制来建立催化所需的典型双金属几何结构。这种机制使这些病毒能够在进化过程中微调其复制保真度,以产生一种称为准种的遗传变异的适当分布。先前的研究表明,保守基序A中的突变会极大地改变RdRP的保真度,这取决于病毒聚合酶的背景,保真度可能会增加或降低。在本文介绍的工作中,我们将这些研究扩展到基序D,该区域形成NTP进入通道的外边缘,在那里它可能作为核苷酸传感器来触发活性位点的闭合。利用晶体学、停流动力学、淬灭流反应和感染性病毒研究来表征柯萨奇病毒B3聚合酶中的15个工程突变。干扰金属A的Mg(2+)离子向活性位点转运的突变对RdRP功能只有轻微影响,但发现苯丙氨酸(Phe)364和脯氨酸(Pro)357之间的堆积相互作用(在肠道病毒聚合酶中绝对保守)对于持续延伸和病毒生长至关重要。将苯丙氨酸364突变为色氨酸会产生一种基因稳定的高保真病毒变体,其在小鼠中的致病性显著降低。这些数据进一步说明了手掌结构域运动对RdRP活性位点闭合的重要性,并证明蛋白质工程可用于改变病毒聚合酶功能并减弱病毒生长和致病性。