Suppr超能文献

一种基因稳定的高保真柯萨奇病毒B3聚合酶的设计,该聚合酶可减弱病毒在体内的生长

Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo.

作者信息

McDonald Seth, Block Andrew, Beaucourt Stéphanie, Moratorio Gonzalo, Vignuzzi Marco, Peersen Olve B

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523.

Institut Pasteur, CNRS UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.

出版信息

J Biol Chem. 2016 Jul 1;291(27):13999-14011. doi: 10.1074/jbc.M116.726596. Epub 2016 May 2.

Abstract

Positive strand RNA viruses replicate via a virally encoded RNA-dependent RNA polymerase (RdRP) that uses a unique palm domain active site closure mechanism to establish the canonical two-metal geometry needed for catalysis. This mechanism allows these viruses to evolutionarily fine-tune their replication fidelity to create an appropriate distribution of genetic variants known as a quasispecies. Prior work has shown that mutations in conserved motif A drastically alter RdRP fidelity, which can be either increased or decreased depending on the viral polymerase background. In the work presented here, we extend these studies to motif D, a region that forms the outer edge of the NTP entry channel where it may act as a nucleotide sensor to trigger active site closure. Crystallography, stopped-flow kinetics, quench-flow reactions, and infectious virus studies were used to characterize 15 engineered mutations in coxsackievirus B3 polymerase. Mutations that interfere with the transport of the metal A Mg(2+) ion into the active site had only minor effects on RdRP function, but the stacking interaction between Phe(364) and Pro(357), which is absolutely conserved in enteroviral polymerases, was found to be critical for processive elongation and virus growth. Mutating Phe(364) to tryptophan resulted in a genetically stable high fidelity virus variant with significantly reduced pathogenesis in mice. The data further illustrate the importance of the palm domain movement for RdRP active site closure and demonstrate that protein engineering can be used to alter viral polymerase function and attenuate virus growth and pathogenesis.

摘要

正链RNA病毒通过病毒编码的RNA依赖性RNA聚合酶(RdRP)进行复制,该聚合酶利用独特的手掌结构域活性位点闭合机制来建立催化所需的典型双金属几何结构。这种机制使这些病毒能够在进化过程中微调其复制保真度,以产生一种称为准种的遗传变异的适当分布。先前的研究表明,保守基序A中的突变会极大地改变RdRP的保真度,这取决于病毒聚合酶的背景,保真度可能会增加或降低。在本文介绍的工作中,我们将这些研究扩展到基序D,该区域形成NTP进入通道的外边缘,在那里它可能作为核苷酸传感器来触发活性位点的闭合。利用晶体学、停流动力学、淬灭流反应和感染性病毒研究来表征柯萨奇病毒B3聚合酶中的15个工程突变。干扰金属A的Mg(2+)离子向活性位点转运的突变对RdRP功能只有轻微影响,但发现苯丙氨酸(Phe)364和脯氨酸(Pro)357之间的堆积相互作用(在肠道病毒聚合酶中绝对保守)对于持续延伸和病毒生长至关重要。将苯丙氨酸364突变为色氨酸会产生一种基因稳定的高保真病毒变体,其在小鼠中的致病性显著降低。这些数据进一步说明了手掌结构域运动对RdRP活性位点闭合的重要性,并证明蛋白质工程可用于改变病毒聚合酶功能并减弱病毒生长和致病性。

相似文献

1
Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo.
J Biol Chem. 2016 Jul 1;291(27):13999-14011. doi: 10.1074/jbc.M116.726596. Epub 2016 May 2.
2
Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases.
J Virol. 2015 Jan;89(1):275-86. doi: 10.1128/JVI.01574-14. Epub 2014 Oct 15.
3
Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases.
J Biol Chem. 2020 Jul 31;295(31):10624-10637. doi: 10.1074/jbc.RA120.013906. Epub 2020 Jun 3.
6
Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice.
J Virol. 2014 May;88(10):5803-15. doi: 10.1128/JVI.00289-14. Epub 2014 Mar 12.
7
ATP Is an Allosteric Inhibitor of Coxsackievirus B3 Polymerase.
Biochemistry. 2016 Jul 19;55(28):3995-4002. doi: 10.1021/acs.biochem.6b00467. Epub 2016 Jul 6.
8
The SARS-CoV nsp12 Polymerase Active Site Is Tuned for Large-Genome Replication.
J Virol. 2022 Aug 24;96(16):e0067122. doi: 10.1128/jvi.00671-22. Epub 2022 Aug 4.
9
Picornaviral polymerase structure, function, and fidelity modulation.
Virus Res. 2017 Apr 15;234:4-20. doi: 10.1016/j.virusres.2017.01.026. Epub 2017 Feb 2.

引用本文的文献

1
The SARS-CoV nsp12 Polymerase Active Site Is Tuned for Large-Genome Replication.
J Virol. 2022 Aug 24;96(16):e0067122. doi: 10.1128/jvi.00671-22. Epub 2022 Aug 4.
2
The Role of the Flavivirus Replicase in Viral Diversity and Adaptation.
Viruses. 2022 May 17;14(5):1076. doi: 10.3390/v14051076.
5
Tradeoffs for a viral mutant with enhanced replication speed.
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2105288118.
9
Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases.
J Biol Chem. 2020 Jul 31;295(31):10624-10637. doi: 10.1074/jbc.RA120.013906. Epub 2020 Jun 3.
10
Measuring Alphavirus Fidelity Using Non-Infectious Virus Particles.
Viruses. 2020 May 15;12(5):546. doi: 10.3390/v12050546.

本文引用的文献

1
Viral Polymerase-Helicase Complexes Regulate Replication Fidelity To Overcome Intracellular Nucleotide Depletion.
J Virol. 2015 Nov;89(22):11233-44. doi: 10.1128/JVI.01553-15. Epub 2015 Aug 26.
3
Viral quasispecies.
Virology. 2015 May;479-480:46-51. doi: 10.1016/j.virol.2015.03.022. Epub 2015 Mar 29.
4
Structural dynamics as a contributor to error-prone replication by an RNA-dependent RNA polymerase.
J Biol Chem. 2014 Dec 26;289(52):36229-48. doi: 10.1074/jbc.M114.616193. Epub 2014 Nov 6.
5
Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases.
J Virol. 2015 Jan;89(1):275-86. doi: 10.1128/JVI.01574-14. Epub 2014 Oct 15.
6
RNA virus population diversity, an optimum for maximal fitness and virulence.
J Biol Chem. 2014 Oct 24;289(43):29531-44. doi: 10.1074/jbc.M114.592303. Epub 2014 Sep 11.
7
Collaboration gets the most out of software.
Elife. 2013 Sep 10;2:e01456. doi: 10.7554/eLife.01456.
9
The role of mutational robustness in RNA virus evolution.
Nat Rev Microbiol. 2013 May;11(5):327-36. doi: 10.1038/nrmicro3003. Epub 2013 Mar 25.
10
What is the role of motif D in the nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus?
PLoS Comput Biol. 2012;8(12):e1002851. doi: 10.1371/journal.pcbi.1002851. Epub 2012 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验