Bonnefond Hubert, Moelants Nina, Talec Amélie, Mayzaud Patrick, Bernard Olivier, Sciandra Antoine
UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France ; INRIA, BIOCORE, Université Nice Côte d'Azur, 06902 Sophia Antipolis, France.
UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, Sorbonne Universités, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France.
Biotechnol Biofuels. 2017 Jan 31;10:25. doi: 10.1186/s13068-017-0713-4. eCollection 2017.
Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for , it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene.
Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of . A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics.
Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.
已知氮饥饿和限制会引发重要的生理变化,尤其是在微藻的脂质代谢方面(甘油三酯、膜脂、β-胡萝卜素等)。尽管关于[微藻名称未给出]的信息较少,但由于其能够同时积累脂质和β-胡萝卜素,它是一种有前途的用于生物燃料生产和生物技术应用的微藻。
进行了从饥饿到氮充足条件下不同程度氮限制的分批和恒化器实验,以研究[微藻名称未给出]稳态培养物中的碳储存动态(总碳、脂质和β-胡萝卜素)。开发了一种新方案,以管理非常高的β-胡萝卜素浓度,并通过色谱法更准确地分离和定量β-胡萝卜素和甘油三酯。基于氮配额动态,Droop模型恰当地描述了生物量的演变。
甘油三酯和β-胡萝卜素都与氮配额呈强烈负相关,突出了它们在氮消耗条件下的碳汇功能。此外,在氮充足条件或适度氮限制(N:C比高于0.04)下,这两种有价值的分子相互关联。在氮饥饿条件下,即对于非常低的N:C比,首次揭示的动态显示出解偶联部分(甘油三酯积累高于β-胡萝卜素),这可能是由于参与脂滴稳定的关键蛋白质短缺所致。这项研究促使精确控制微藻的氮配额以优化脂质生产力。