Hardie Rae-Anne, van Dam Ellen, Cowley Mark, Han Ting-Li, Balaban Seher, Pajic Marina, Pinese Mark, Iconomou Mary, Shearer Robert F, McKenna Jessie, Miller David, Waddell Nicola, Pearson John V, Grimmond Sean M, Sazanov Leonid, Biankin Andrew V, Villas-Boas Silas, Hoy Andrew J, Turner Nigel, Saunders Darren N
The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia.
St Vincent's Clinical School, University of New South Wales, Sydney, NSW Australia.
Cancer Metab. 2017 Jan 30;5:2. doi: 10.1186/s40170-017-0164-1. eCollection 2017.
Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited.
We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing.
We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours.
The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy.
胰腺癌的五年生存率约为8%,具有独特的分子异质性且治疗选择有限。针对代谢进行靶向治疗已成为一种潜在有效的癌症治疗策略,如胰腺癌这类由难以作为药物靶点的基因改变驱动的癌症。尽管在多种肿瘤类型中均观察到了体细胞线粒体基因组(mtDNA)突变,但对代谢基因型-表型关系的了解仍然有限。
我们对一组独特的患者来源的胰腺癌细胞系(PDCLs)采用了整合基因组学、代谢组学和表型分析的方法。通过对线粒体基因组(mtDNA)以及编码线粒体组分和代谢基因的核基因进行靶向测序来开展基因组分析。PDCLs的表型特征包括使用海马XF细胞外通量分析仪测量细胞耗氧率(OCR)和细胞外酸化率(ECAR)、靶向代谢组学和通路分析以及放射性标记谷氨酰胺示踪。
我们在12个患者来源的胰腺癌细胞系(PDCLs)的mtDNA中鉴定出24个体细胞突变。在一项针对约1000个对线粒体功能和代谢重要的核基因的靶向研究中又鉴定出18个突变。与参考数据集的比较表明,对具有预测功能效应的非同义突变体存在强烈的选择偏向。表型分析显示出与线粒体功能障碍一致的代谢变化,包括耗氧量降低和糖酵解增加。代谢组学和放射性标记底物示踪表明肿瘤中还原性谷氨酰胺代谢和脂质合成开始。
胰腺肿瘤的异质基因组格局可能汇聚于一种共同的代谢表型,单个肿瘤通过不同的遗传机制适应增加的合成代谢需求。针对由此产生的代谢表型可能是一种有效的治疗策略。