Suppr超能文献

测量培养细胞中的氧消耗率(OCR)和细胞外酸化率(ECAR)以评估能量代谢。

Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.

作者信息

Plitzko Birte, Loesgen Sandra

机构信息

Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.

出版信息

Bio Protoc. 2018 May 20;8(10):e2850. doi: 10.21769/BioProtoc.2850.

Abstract

Mammalian cells generate ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. Cancer cells are known to reprogram their metabolism using different strategies to meet energetic and anabolic needs ( Koppenol , 2011 ; Zheng, 2012). Additionally, each cancer tissue has its own individual metabolic features. Mitochondria not only play a key role in energy metabolism but also in cell cycle regulation of cells. Therefore, mitochondria have emerged as a potential target for anticancer therapy since they are structurally and functionally different from their non-cancerous counterparts (D'Souza , 2011). We detail a protocol for measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measurements in living cells, utilizing the Seahorse XF24 Extracellular Flux Analyzer (Figure 1). The Seahorse XF24 Extracellular Flux Analyzer continuously measures oxygen concentration and proton flux in the cell supernatant over time ( Wu , 2007 ). These measurements are converted in OCR and ECAR values and enable a direct quantification of mitochondrial respiration and glycolysis. With this protocol, we sought to assess basal mitochondrial function and mitochondrial stress of three different cancer cell lines in response to the cytotoxic test lead compound mensacarcin in order to investigate its mechanism of action. Cells were plated in XF24 cell culture plates and maintained for 24 h. Prior to analysis, the culture media was replaced with unbuffered DMEM pH 7.4 and cells were then allowed to equilibrate in a non-CO incubator immediately before metabolic flux analysis using the Seahorse XF to allow for precise measurements of Milli-pH unit changes. OCR and ECAR were measured under basal conditions and after injection of compounds through drug injection ports. With the described protocol we assess the basic energy metabolism profiles of the three cell lines as well as key parameters of mitochondrial function in response to our test compound and by sequential addition of mitochondria perturbing agents oligomycin, FCCP and rotenone/antimycin A. Figure 1.Overview of seahorse experiment.

摘要

哺乳动物细胞通过线粒体(氧化磷酸化)和非线粒体(糖酵解)代谢产生三磷酸腺苷(ATP)。已知癌细胞会采用不同策略对其代谢进行重编程,以满足能量和合成代谢需求(科彭诺尔,2011年;郑,2012年)。此外,每种癌组织都有其独特的代谢特征。线粒体不仅在能量代谢中起关键作用,还在细胞的细胞周期调控中发挥作用。因此,由于线粒体在结构和功能上与其非癌对应物不同,它已成为抗癌治疗的一个潜在靶点(德索萨,2011年)。我们详细介绍一种利用海马XF24细胞外通量分析仪测量活细胞中氧消耗率(OCR)和细胞外酸化率(ECAR)的方法(图1)。海马XF24细胞外通量分析仪可随时间连续测量细胞上清液中的氧浓度和质子通量(吴,2007年)。这些测量值会转换为OCR和ECAR值,从而能够直接定量线粒体呼吸和糖酵解。通过这个方法,我们试图评估三种不同癌细胞系的基础线粒体功能和线粒体应激,以应对细胞毒性测试先导化合物美登木素,从而研究其作用机制。将细胞接种到XF24细胞培养板中并培养24小时。在分析之前,将培养基换成pH 7.4的无缓冲杜氏改良 Eagle培养基(DMEM),然后在使用海马XF进行代谢通量分析之前,立即将细胞置于非二氧化碳培养箱中平衡,以便精确测量毫pH单位变化。在基础条件下以及通过药物注射端口注射化合物后测量OCR和ECAR。通过所描述的方法,我们评估了这三种细胞系的基本能量代谢概况以及线粒体功能的关键参数,以应对我们的测试化合物,并通过依次添加线粒体干扰剂寡霉素、羰基氰化物-4-(三氟甲氧基)苯腙(FCCP)以及鱼藤酮/抗霉素A。图1.海马实验概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a357/8275291/516bce58ab4a/BioProtoc-8-10-2850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验