Suppr超能文献

[采用整合转录组学-代谢组学方法鉴定由谷氨酰胺合成酶活性调控的代谢途径]

[Integrative transcriptomics-metabolomics approach to identify metabolic pathways regulated by glutamine synthetase activity].

作者信息

Ling Ting, Shi Jing, Feng Ting-Ze, Pei Shao-Jun, Li Si-Yi, Piao Hai-Long

机构信息

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Se Pu. 2025 Mar;43(3):207-219. doi: 10.3724/SP.J.1123.2024.04003.

Abstract

Glutamine synthetase (GS), the only enzyme responsible for de novo glutamine synthesis, plays a significant role in cancer progression. As an example of the consequences of GS mutations, the R324C variant causes congenital glutamine deficiency, which results in brain abnormalities and neonatal death. However, the influence of GS-deficient mutations on cancer cells remains relatively unexplored. In this study, we investigated the effects of GS and GS-deficient mutations, including R324C and previously unreported K241R, which serve as models for GS inactivation. This study provided intriguing insights into the intricate relationship between GS mutations and cancer cell metabolism. Our findings strongly support recent studies that suggest GS deletion leads to the suppression of diverse signaling cascades associated with glutamine metabolism under glutamine-stripping conditions. The affected processes include DNA synthesis, the citric acid cycle, and reactive oxygen species (ROS) detoxification. This suppression originates from the inherent inability of cells to autonomously synthesize glutamine under glutamine-depleted conditions. As a key source of reduced nitrogen, glutamine is crucial for the formation of purine and pyrimidine bases, which are essential building blocks for DNA synthesis. Furthermore, the citric acid cycle is inhibited by the absence of negatively charged glutamate within the mitochondrial matrix, particularly when glutamine is scarce. This deficiency decreases the flux of -ketoglutarate (-KG), a principal driver of the citric acid cycle. Intermediate metabolites of the citric acid cycle directly or indirectly contribute to the generation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a core component of redox homeostasis. Using the GS_R324C and GS_K241R mutants, we conducted an integrative transcriptomics and metabolomics analysis. The GS mutants with reduced activity activated multiple amino acid biosynthesis pathways, including arginine-proline, glycine-serine-threonine, and alanine-aspartate-glutamate metabolism. This intriguing behavior led us to hypothesize that despite hindrance of the citric acid cycle, abundant intracellular glutamate is redirected through alternative processes, including transamination. Simultaneously, key metabolic enzymes in the amino acid synthesis pathways, such as glutamic-oxaloacetic transaminase 1 (GOT1), glutamic-pyruvic transaminase 2 (GPT2), pyrroline-5-carboxylate reductase 1 (PYCR1), and phosphoserine aminotransferase 1 (PSAT1), exhibited increased mRNA levels. Additionally, GS deficiency appeared to upregulate the expression of glutamine transporters SLC38A2 and SLC1A5. Thus, restricting extracellular amino acids, such as glutamine, induces a stress response while promoting transcription or translation by a select group of genes, thereby facilitating cellular adaptation. However, similar to GS_WT, both GS_R324C and GS_K241R were modulated by glutamine treatment. Among GS-activity-dependent behaviors, the increased expression of numerous aminoacyl-tRNA synthetases (ARSs), which are critical for aminoacyl-tRNA biosynthesis, remains poorly understood. Most ARS-encoding genes are transcriptionally induced by activating transcription factor 4 (ATF4), the expression of which increases under oxidative stress, endoplasmic reticulum stress, hypoxia, and amino acid limitation. In GS-deficient cells, the increased expression of ATF4 was accompanied by pronounced stress caused by glutamine starvation. Thus, ARS upregulation may predominantly arise from increased ATF4 expression in GS-deficient cells. Additionally, transcriptomic analysis revealed the differential expression of specific genes, regardless of GS activity, suggesting that GS is involved in various processes other than glutamine synthesis, including angiogenesis. Although our omics study was limited to H1299 cells, in subsequent experiments, we validated our findings using additional cell lines, including Hepa1-6 and LN-229. To attain a more comprehensive understanding of the impact of the newly identified GS_K241R mutant, our investigation should be extended to various cell types and mouse models. In summary, we identified and investigated GS-deficient mutations in cancer cells and conducted an integrative transcriptomics-metabolomics analysis with comparisons to wild-type GS. This comprehensive approach provided crucial insights into the intricate pathways modulated by GS activity. Our findings advance the understanding of how GS functions in the context of reprogrammed cellular metabolism, particularly during glutamine deprivation. The altered metabolism triggered by elevated glutamate levels arising from GS mutations highlights the remarkable plasticity of cancer cell metabolism. Notably, considering the increasing research focus on GS as a potential therapeutic target in various cancer types, the findings of this study could provide innovative perspectives for drug development and the formulation of clinical treatment strategies.

摘要

谷氨酰胺合成酶(GS)是唯一负责从头合成谷氨酰胺的酶,在癌症进展中起着重要作用。作为GS突变后果的一个例子,R324C变体导致先天性谷氨酰胺缺乏,进而导致大脑异常和新生儿死亡。然而,GS缺陷型突变对癌细胞的影响仍相对未被探索。在本研究中,我们研究了GS和GS缺陷型突变的影响,包括R324C和先前未报道的K241R,它们作为GS失活的模型。这项研究为GS突变与癌细胞代谢之间的复杂关系提供了有趣的见解。我们的发现有力地支持了最近的研究,这些研究表明在谷氨酰胺剥夺条件下,GS缺失会导致与谷氨酰胺代谢相关的多种信号级联反应受到抑制。受影响的过程包括DNA合成、柠檬酸循环和活性氧(ROS)解毒。这种抑制源于细胞在谷氨酰胺耗尽条件下自主合成谷氨酰胺的内在能力不足。作为还原态氮的关键来源,谷氨酰胺对于嘌呤和嘧啶碱基的形成至关重要,而嘌呤和嘧啶碱基是DNA合成的基本组成部分。此外,线粒体基质中缺乏带负电荷的谷氨酸会抑制柠檬酸循环,尤其是在谷氨酰胺稀缺时。这种缺乏会降低柠檬酸循环的主要驱动者α-酮戊二酸(α-KG)的通量。柠檬酸循环的中间代谢产物直接或间接有助于烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的生成,NADPH氧化酶是氧化还原稳态的核心组成部分。使用GS_R324C和GS_K241R突变体,我们进行了综合转录组学和代谢组学分析。活性降低的GS突变体激活了多个氨基酸生物合成途径,包括精氨酸-脯氨酸、甘氨酸-丝氨酸-苏氨酸和丙氨酸-天冬氨酸-谷氨酸代谢。这种有趣的行为使我们推测,尽管柠檬酸循环受到阻碍,但丰富的细胞内谷氨酸会通过包括转氨作用在内的替代过程重新定向。同时,氨基酸合成途径中的关键代谢酶,如谷草转氨酶1(GOT1)、谷丙转氨酶2(GPT2)、吡咯啉-5-羧酸还原酶1(PYCR1)和磷酸丝氨酸转氨酶1(PSAT1),其mRNA水平升高。此外,GS缺乏似乎上调了谷氨酰胺转运蛋白SLC38A2和SLC1A5的表达。因此,限制细胞外氨基酸,如谷氨酰胺,会诱导应激反应,同时促进一组特定基因的转录或翻译,从而促进细胞适应。然而,与GS_WT类似,GS_R324C和GS_K241R都受到谷氨酰胺处理的调节。在依赖GS活性的行为中,对氨酰-tRNA生物合成至关重要的众多氨酰-tRNA合成酶(ARS)表达增加,但对此仍知之甚少。大多数ARS编码基因由激活转录因子4(ATF4)转录诱导,在氧化应激、内质网应激、缺氧和氨基酸限制条件下,ATF4的表达会增加。在GS缺陷型细胞中,ATF4表达增加伴随着谷氨酰胺饥饿引起的明显应激。因此,ARS上调可能主要源于GS缺陷型细胞中ATF4表达的增加。此外,转录组分析揭示了特定基因的差异表达,与GS活性无关,这表明GS参与了除谷氨酰胺合成之外的各种过程,包括血管生成。尽管我们的组学研究仅限于H1299细胞,但在后续实验中,我们使用包括Hepa1-6和LN-229在内的其他细胞系验证了我们的发现。为了更全面地了解新鉴定的GS_K241R突变体的影响,我们的研究应扩展到各种细胞类型和小鼠模型。总之我们在癌细胞中鉴定并研究了GS缺陷型突变,并与野生型GS进行比较,进行了综合转录组学-代谢组学分析。这种全面的方法为GS活性调节的复杂途径提供了关键见解。我们的发现推进了对GS在细胞代谢重编程背景下,特别是在谷氨酰胺剥夺期间如何发挥作用的理解。由GS突变引起的谷氨酸水平升高所触发的代谢改变突出了癌细胞代谢的显著可塑性。值得注意的是,考虑到对GS作为各种癌症类型潜在治疗靶点的研究日益增加,本研究的结果可为药物开发和临床治疗策略的制定提供创新视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66e0/11883535/e5345d7869ab/cjc-43-03-207-img_1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验