Niu Ningning, Xiang Jian-Feng, Yang Qin, Wang Lijun, Wei Zhanying, Chen Ling-Ling, Yang Li, Zou Weiguo
State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai, China.
State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai, China.
Cell Discov. 2017 Jan 24;3:16050. doi: 10.1038/celldisc.2016.50. eCollection 2017.
Protein translation regulation has essential roles in inflammatory responses, cancer initiation and the pathogenesis of several neurodegenerative disorders. However, the role of the regulation of protein translation in mammalian skeleton development has been rarely elaborated. Here we report that the lack of the RNA-binding protein sterile alpha motif domain containing protein 4 (SAMD4) resulted in multiple developmental defects in mice, including delayed bone development and decreased osteogenesis. Samd4-deficient mesenchymal progenitors exhibit impaired osteoblast differentiation and function. Mechanism study demonstrates that SAMD4 binds the Mig6 mRNA and inhibits MIG6 protein synthesis. Consistent with this, Samd4-deficient cells have increased MIG6 protein level and knockdown of Mig6 rescues the impaired osteogenesis in Samd4-deficient cells. Furthermore, Samd4-deficient mice also display chondrocyte defects, which is consistent with the regulation of MIG6 protein level by SAMD4. These findings define SAMD4 as a previously unreported key regulator of osteoblastogenesis and bone development, implying that regulation of protein translation is an important mechanism governing skeletogenesis and that control of protein translation could have therapeutic potential in metabolic bone diseases, such as osteoporosis.
蛋白质翻译调控在炎症反应、癌症发生以及多种神经退行性疾病的发病机制中起着至关重要的作用。然而,蛋白质翻译调控在哺乳动物骨骼发育中的作用却鲜有阐述。在此,我们报告称,缺乏含无菌α基序结构域蛋白4(SAMD4)的RNA结合蛋白会导致小鼠出现多种发育缺陷,包括骨骼发育延迟和成骨作用降低。Samd4缺陷的间充质祖细胞表现出成骨细胞分化和功能受损。机制研究表明,SAMD4与Mig6 mRNA结合并抑制MIG6蛋白合成。与此一致的是,Samd4缺陷细胞中MIG6蛋白水平升高,而敲低Mig6可挽救Samd4缺陷细胞中受损的成骨作用。此外,Samd4缺陷小鼠还表现出软骨细胞缺陷,这与SAMD4对MIG6蛋白水平的调控一致。这些发现将SAMD4定义为成骨细胞生成和骨骼发育中一个此前未报道的关键调节因子,这意味着蛋白质翻译调控是骨骼发生的一个重要机制,并且对蛋白质翻译的控制在代谢性骨病(如骨质疏松症)中可能具有治疗潜力。