Suppr超能文献

格陵兰冰原基础热状态的综合研究。

A synthesis of the basal thermal state of the Greenland Ice Sheet.

作者信息

MacGregor Joseph A, Fahnestock Mark A, Catania Ginny A, Aschwanden Andy, Clow Gary D, Colgan William T, Gogineni S Prasad, Morlighem Mathieu, Nowicki Sophie M J, Paden John D, Price Stephen F, Seroussi Hélène

机构信息

Institute for Geophysics, The University of Texas at Austin, Austin, Texas, USA.

Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA.

出版信息

J Geophys Res Earth Surf. 2016 Aug 10;121(7):1328-1350. doi: 10.1002/2015JF003803. Epub 2016 Jul 23.

Abstract

The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

摘要

冰盖的基底热状态(冻结或融化)对其演化、动力学以及对外部强迫的响应具有重要的控制作用。然而,这种状态只能在稀疏的钻孔内直接观测到,或者根据冰下湖泊的存在来最终推断。在此,我们综合了格陵兰冰盖基底热状态在空间上的广泛推断,以更好地限定这种状态。现有的推断包括“海平面上升研究计划”(SeaRISE)中所包含的八个热机械冰流模型的输出结果。基底热状态的新遥感推断源自全新世放射性地层学、现代地表速度以及中分辨率成像光谱仪(MODIS)图像。热机械建模和遥感推断总体上都认为,格陵兰东北部冰流以及西南冰流系统的大部分区域在底部是融化的,而中央冰脊下方的底部,尤其是其西侧斜坡,是冻结的。在其他地方,关于基底热状态的一致性较差。在北格陵兰冰芯计划(NorthGRIP)和格陵兰冰盖深层冰芯钻探计划(DYE-3)附近,模型和遥感推断都很少能准确反映钻孔观测到的基底热状态。这一综合分析确定了格陵兰冰盖的一大部分区域(约占面积的三分之一),在这些区域进行更多观测将最有助于增进对其整体基底热状态的了解。

相似文献

1
A synthesis of the basal thermal state of the Greenland Ice Sheet.
J Geophys Res Earth Surf. 2016 Aug 10;121(7):1328-1350. doi: 10.1002/2015JF003803. Epub 2016 Jul 23.
2
Recharge of a subglacial lake by surface meltwater in northeast Greenland.
Nature. 2015 Feb 12;518(7538):223-7. doi: 10.1038/nature14116. Epub 2015 Jan 21.
3
Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.
Nature. 2014 Oct 2;514(7520):80-3. doi: 10.1038/nature13796.
4
Radiostratigraphy and age structure of the Greenland Ice Sheet.
J Geophys Res Earth Surf. 2015 Feb;120(2):212-241. doi: 10.1002/2014JF003215. Epub 2015 Feb 13.
5
Distribution and dynamics of Greenland subglacial lakes.
Nat Commun. 2019 Jun 26;10(1):2810. doi: 10.1038/s41467-019-10821-w.
6
Subglacial lake drainage detected beneath the Greenland ice sheet.
Nat Commun. 2015 Oct 9;6:8408. doi: 10.1038/ncomms9408.
7
Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream.
Nat Commun. 2024 Jul 31;15(1):6434. doi: 10.1038/s41467-024-50772-5.
8
Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10). doi: 10.1073/pnas.2116036119.
9
Uppermost crustal structure regulates the flow of the Greenland Ice Sheet.
Nat Commun. 2021 Dec 15;12(1):7307. doi: 10.1038/s41467-021-27537-5.
10
Basal drainage system response to increasing surface melt on the Greenland ice sheet.
Science. 2013 Aug 16;341(6147):777-9. doi: 10.1126/science.1235905.

引用本文的文献

1
Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream.
Nat Commun. 2024 Jul 31;15(1):6434. doi: 10.1038/s41467-024-50772-5.
2
Complex motion of Greenland Ice Sheet outlet glaciers with basal temperate ice.
Sci Adv. 2023 Feb 10;9(6):eabq5180. doi: 10.1126/sciadv.abq5180.
3
Anthroponumbers.org: A quantitative database of human impacts on Planet Earth.
Patterns (N Y). 2022 Aug 3;3(9):100552. doi: 10.1016/j.patter.2022.100552. eCollection 2022 Sep 9.
4
Threshold response to melt drives large-scale bed weakening in Greenland.
Nature. 2022 Jul;607(7920):714-720. doi: 10.1038/s41586-022-04927-3. Epub 2022 Jul 27.
5
Multisystem Synthesis of Radar Sounding Observations of the Amundsen Sea Sector From the 2004-2005 Field Season.
J Geophys Res Earth Surf. 2021 Oct;126(10):e2021JF006296. doi: 10.1029/2021JF006296. Epub 2021 Oct 22.
6
A Late Paleocene age for Greenland's Hiawatha impact structure.
Sci Adv. 2022 Mar 11;8(10):eabm2434. doi: 10.1126/sciadv.abm2434. Epub 2022 Mar 9.
7
Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10). doi: 10.1073/pnas.2116036119.
8
A first constraint on basal melt-water production of the Greenland ice sheet.
Nat Commun. 2021 Jun 8;12(1):3461. doi: 10.1038/s41467-021-23739-z.
10
Sediment controls dynamic behavior of a Cordilleran Ice Stream at the Last Glacial Maximum.
Nat Commun. 2020 Apr 14;11(1):1826. doi: 10.1038/s41467-020-15579-0.

本文引用的文献

1
Considering thermal-viscous collapse of the Greenland ice sheet.
Earths Future. 2015 Jul;3(7):252-267. doi: 10.1002/2015EF000301. Epub 2015 Jul 7.
2
Holocene deceleration of the Greenland Ice Sheet.
Science. 2016 Feb 5;351(6273):590-3. doi: 10.1126/science.aab1702. Epub 2016 Feb 4.
3
Complex Greenland outlet glacier flow captured.
Nat Commun. 2016 Feb 1;7:10524. doi: 10.1038/ncomms10524.
4
High geothermal heat flux measured below the West Antarctic Ice Sheet.
Sci Adv. 2015 Jul 10;1(6):e1500093. doi: 10.1126/sciadv.1500093. eCollection 2015 Jul.
5
Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming.
Nature. 2015 Oct 29;526(7575):692-5. doi: 10.1038/nature15722.
6
Radiostratigraphy and age structure of the Greenland Ice Sheet.
J Geophys Res Earth Surf. 2015 Feb;120(2):212-241. doi: 10.1002/2014JF003215. Epub 2015 Feb 13.
7
Distinct patterns of seasonal Greenland glacier velocity.
Geophys Res Lett. 2014 Oct 28;41(20):7209-7216. doi: 10.1002/2014GL061836. Epub 2014 Oct 27.
8
Recharge of a subglacial lake by surface meltwater in northeast Greenland.
Nature. 2015 Feb 12;518(7538):223-7. doi: 10.1038/nature14116. Epub 2015 Jan 21.
9
Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.
Nature. 2014 Oct 2;514(7520):80-3. doi: 10.1038/nature13796.
10
Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9070-2. doi: 10.1073/pnas.1405184111. Epub 2014 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验