Scott Polar Research Institute, University of Cambridge, Cambridge, UK.
Department of Geological Sciences, University of Florida, Gainesville, FL, USA.
Sci Adv. 2023 Feb 10;9(6):eabq5180. doi: 10.1126/sciadv.abq5180.
Uncertainty associated with ice sheet motion plagues sea level rise predictions. Much of this uncertainty arises from imperfect representations of physical processes including basal slip and internal ice deformation, with ice sheet models largely incapable of reproducing borehole-based observations. Here, we model isolated three-dimensional domains from fast-moving (Sermeq Kujalleq/Store Glacier) and slow-moving (Isunnguata Sermia) ice sheet settings in Greenland. By incorporating realistic geostatistically simulated topography, we show that a spatially highly variable layer of temperate ice (much softer ice at the pressure-melting point) forms naturally in both settings, alongside ice motion patterns which diverge substantially from those obtained using smoothly varying BedMachine topography. Temperate ice is vertically extensive (>100 meters) in deep troughs but thins notably (<5 meters) over bedrock highs, with basal slip rates reaching >90 or <5% of surface velocity dependent on topography and temperate layer thickness. Developing parameterizations of the net effect of this complex motion can improve the realism of predictive ice sheet models.
与冰盖运动相关的不确定性困扰着海平面上升的预测。其中很大一部分不确定性来自于对物理过程的不完全描述,包括基底滑动和内部冰变形,而冰盖模型在很大程度上无法再现基于钻孔的观测结果。在这里,我们对来自格陵兰快速移动(Sermeq Kujalleq/Store Glacier)和缓慢移动(Isunnguata Sermia)冰盖环境的孤立三维区域进行建模。通过纳入现实的地质统计学模拟地形,我们表明,在这两种情况下,自然形成了一层空间变化很大的温带冰(在压力融化点处更软的冰),以及与使用平滑变化的 BedMachine 地形获得的冰运动模式有很大差异的冰运动模式。温带冰在深槽中垂直延伸(>100 米),但在基岩高地处明显变薄(<5 米),基底滑动速率达到表面速度的>90%或<5%,具体取决于地形和温带层厚度。开发这种复杂运动的净效应的参数化可以提高预测冰盖模型的现实性。