文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于双平面X线图像的半自动三维脊柱重建:脊柱侧弯患者椎间负荷的预测

Semiautomated 3D Spine Reconstruction from Biplanar Radiographic Images: Prediction of Intervertebral Loading in Scoliotic Subjects.

作者信息

Bassani Tito, Ottardi Claudia, Costa Francesco, Brayda-Bruno Marco, Wilke Hans-Joachim, Galbusera Fabio

机构信息

IRCCS Istituto Ortopedico Galeazzi , Milan , Italy.

Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano , Milan , Italy.

出版信息

Front Bioeng Biotechnol. 2017 Jan 20;5:1. doi: 10.3389/fbioe.2017.00001. eCollection 2017.


DOI:10.3389/fbioe.2017.00001
PMID:28164082
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5247473/
Abstract

The present study proposes a semiautomatic software approach to reconstruct 3D subject-specific musculoskeletal model of thoracolumbar spine from radiographic digitized images acquired with EOS system. The approach is applied to evaluate the intervertebral loads in 38 standing adolescents with mild idiopathic scoliosis. For each vertebra, a set of landmarks was manually identified on radiographic images. The landmark coordinates were processed to calculate the following vertebral geometrical properties in the 3D space (i) location (ii) dimensions; and (iii) rotations. Spherical joints simulated disks, ligaments, and facet joints. Body weight distribution, muscles forces, and insertion points were placed according to physiological-anatomical values. Inverse static analysis, calculating joints' reactions in maintaining assigned spine configuration, was performed with AnyBody software. Reaction forces were computed to quantify intervertebral loads, and correlation with the patient anatomical parameters was then checked. Preliminary validation was performed comparing the model outcomes with that obtained from other authors in previous modeling works and from measurements. The comparison with previous modeling works and studies partially fulfilled the preliminary validation purpose. However, minor incongruities were pointed out that need further investigations. The subjects' intervertebral loads were found significantly correlated with the anatomical parameters in the sagittal and axial planes. Despite preliminary encouraging results that support model suitability, future investigations to consolidate the proposed approach are necessary. Nonetheless, the present method appears to be a promising tool that once fully validated could allow the subject-specific non-invasive evaluation of a deformed spine, providing supplementary information to the routine clinical examination and surgical intervention planning.

摘要

本研究提出了一种半自动软件方法,用于从EOS系统获取的数字化X线影像重建胸腰椎的三维个体特异性肌肉骨骼模型。该方法应用于评估38名患有轻度特发性脊柱侧凸的站立青少年的椎间负荷。对于每个椎体,在X线影像上手动识别一组标志点。对标志点坐标进行处理,以计算三维空间中以下椎体几何特性:(i)位置;(ii)尺寸;以及(iii)旋转。球形关节模拟椎间盘、韧带和小关节。根据生理解剖学值放置体重分布、肌肉力量和附着点。使用AnyBody软件进行逆静态分析,计算维持指定脊柱构型时关节的反应力。计算反应力以量化椎间负荷,然后检查其与患者解剖参数的相关性。通过将模型结果与其他作者在先前建模工作中获得的结果以及测量结果进行比较,进行了初步验证。与先前建模工作和研究的比较部分实现了初步验证目的。然而,指出了一些小的不一致之处,需要进一步研究。发现受试者的椎间负荷与矢状面和轴平面的解剖参数显著相关。尽管初步令人鼓舞的结果支持模型的适用性,但仍有必要进行进一步研究以巩固所提出的方法。尽管如此,本方法似乎是一种有前途的工具,一旦得到充分验证,可允许对变形脊柱进行个体特异性非侵入性评估,为常规临床检查和手术干预规划提供补充信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/11625a185ad7/fbioe-05-00001-a001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/c8c8451858e8/fbioe-05-00001-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/a86e082f95ab/fbioe-05-00001-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/d29aa63d3f8e/fbioe-05-00001-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/31a18f359dd7/fbioe-05-00001-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/f1c642355555/fbioe-05-00001-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/11625a185ad7/fbioe-05-00001-a001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/c8c8451858e8/fbioe-05-00001-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/a86e082f95ab/fbioe-05-00001-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/d29aa63d3f8e/fbioe-05-00001-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/31a18f359dd7/fbioe-05-00001-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/f1c642355555/fbioe-05-00001-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/5247473/11625a185ad7/fbioe-05-00001-a001.jpg

相似文献

[1]
Semiautomated 3D Spine Reconstruction from Biplanar Radiographic Images: Prediction of Intervertebral Loading in Scoliotic Subjects.

Front Bioeng Biotechnol. 2017-1-20

[2]
Assessment of trunk muscle activation and intervertebral load in adolescent idiopathic scoliosis by musculoskeletal modelling approach.

J Biomech. 2021-1-4

[3]
Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral disks.

Eur Spine J. 1998

[4]
Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.

Spine J. 2012-9-24

[5]
Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.

IEEE Trans Med Imaging. 2009-9

[6]
Self-calibration of biplanar radiographic images through geometric spine shape descriptors.

IEEE Trans Biomed Eng. 2009-9-29

[7]
Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation.

J Biomech. 2004-2

[8]
Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography.

Spine (Phila Pa 1976). 2012-7-15

[9]
[Perioperative radiographic reconstruction of the scoliotic vertebral column].

Ann Chir. 1999

[10]
Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level.

J Biomech. 2017-6-14

引用本文的文献

[1]
The Association Between Adjacent Forces and the Development of Proximal Junctional Kyphosis: A Musculoskeletal Analysis.

Global Spine J. 2025-2-27

[2]
Dataset of Finite Element Models of Normal and Deformed Thoracolumbar Spine.

Sci Data. 2024-5-29

[3]
Additive manufacturing for biomedical applications: a review on classification, energy consumption, and its appreciable role since COVID-19 pandemic.

Prog Addit Manuf. 2022-12-27

[4]
Effect of Unilateral Knee Extension Restriction on the Lumbar Region during Gait.

J Healthc Eng. 2022

[5]
Accounting for Biomechanical Measures from Musculoskeletal Simulation of Upright Posture Does Not Enhance the Prediction of Curve Progression in Adolescent Idiopathic Scoliosis.

Front Bioeng Biotechnol. 2021-9-10

[6]
Subject-Specific Alignment and Mass Distribution in Musculoskeletal Models of the Lumbar Spine.

Front Bioeng Biotechnol. 2021-8-31

[7]
Computational modelling of the scoliotic spine: A literature review.

Int J Numer Method Biomed Eng. 2021-10

[8]
Spinal Compressive Forces in Adolescent Idiopathic Scoliosis With and Without Carrying Loads: A Musculoskeletal Modeling Study.

Front Bioeng Biotechnol. 2020-3-3

[9]
Dependence of lumbar loads on spinopelvic sagittal alignment: An evaluation based on musculoskeletal modeling.

PLoS One. 2019-3-18

本文引用的文献

[1]
Computational Biomechanical Modeling of Scoliotic Spine: Challenges and Opportunities.

Spine Deform. 2013-11

[2]
Non-invasive methods of computer vision in the posture evaluation of adolescent idiopathic scoliosis.

J Bodyw Mov Ther. 2016-10

[3]
Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation.

Biomech Model Mechanobiol. 2016-12

[4]
Musculoskeletal modelling of muscle activation and applied external forces for the correction of scoliosis.

J Neuroeng Rehabil. 2014-4-7

[5]
Numerical evaluation of the correlation between the normal variation in the sagittal alignment of the lumbar spine and the spinal loads.

J Orthop Res. 2013-12-27

[6]
Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography.

Spine (Phila Pa 1976). 2012-7-15

[7]
The EOS™ imaging system and its uses in daily orthopaedic practice.

Int Orthop. 2012-2-28

[8]
Corrective force analysis for scoliosis from implant rod deformation.

Clin Biomech (Bristol). 2012-7

[9]
An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces.

Med Eng Phys. 2011-10-5

[10]
Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model.

Med Eng Phys. 2011-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索