Suppr超能文献

基于混合统计模型和图像模型的脊柱侧弯个性化X射线三维重建

Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.

作者信息

Kadoury Samuel, Cheriet Farida, Labelle Hubert

机构信息

Department of Biomedical Engineering, Ecole Polytechnique de Montréal, Sainte-Justine Hospital Research Center, Montréal, QC, Canada.

出版信息

IEEE Trans Med Imaging. 2009 Sep;28(9):1422-35. doi: 10.1109/TMI.2009.2016756. Epub 2009 Mar 24.

Abstract

This paper presents a novel 3-D reconstruction method of the scoliotic spine using prior vertebra models with image-based information taken from biplanar X-ray images. We first propose a global modeling approach by exploiting the 3-D scoliotic curve reconstructed from a coronal and sagittal X-ray image in order to generate an approximate statistical model from a 3-D database of scoliotic patients based on a transformation algorithm which incorporates intuitive geometrical properties. The personalized 3-D reconstruction of the spine is then achieved with a novel segmentation method which takes into account the variable appearance of scoliotic vertebrae (rotation, wedging) from standard quality images in order to segment and isolate individual vertebrae on the radiographic planes. More specifically, it uses prior 3-D models regulated from 2-D image level set functionals to identify and match corresponding bone structures on the biplanar X-rays. An iterative optimization procedure integrating similarity measures such as deformable vertebral contours regulated from high-level anatomical primitives, morphological knowledge and epipolar constraints is then applied to globally refine the 3-D anatomical landmarks on each vertebra level of the spine. This method was validated on twenty scoliotic patients by comparing results to a standard manual approach. The qualitative evaluation of the retro-projection of the vertebral contours confirms that the proposed method can achieve better consistency to the X-ray image's natural content. A comparison to synthetic models and real patient data also yields good accuracy on the localization of low-level primitives such as anatomical landmarks identified by an expert on each vertebra. The experiments reported in this paper demonstrate that the proposed method offers a better matching accuracy on a set of landmarks from biplanar views when compared to a manual technique for each evaluated cases, and its precision is comparable to 3-D models generated from magnetic resonance images, thus suitable for routine 3-D clinical assessment of spinal deformities.

摘要

本文提出了一种新颖的脊柱侧弯三维重建方法,该方法利用基于双平面X射线图像的图像信息的先前椎体模型。我们首先提出一种全局建模方法,通过利用从冠状面和矢状面X射线图像重建的三维脊柱侧弯曲线,基于一种结合直观几何特性的变换算法,从脊柱侧弯患者的三维数据库中生成一个近似统计模型。然后,通过一种新颖的分割方法实现脊柱的个性化三维重建,该方法考虑了标准质量图像中脊柱侧弯椎体的可变外观(旋转、楔形变),以便在放射影像平面上分割和分离单个椎体。更具体地说,它使用从二维图像水平集函数调节的先前三维模型来识别和匹配双平面X射线上的相应骨骼结构。然后应用一个迭代优化程序,该程序整合了诸如从高级解剖原语调节的可变形椎体轮廓、形态学知识和极线约束等相似性度量,以全局优化脊柱每个椎体水平上的三维解剖标志。通过将结果与标准手动方法进行比较,该方法在20名脊柱侧弯患者身上得到了验证。椎体轮廓反投影的定性评估证实,所提出的方法可以与X射线图像的自然内容实现更好的一致性。与合成模型和真实患者数据的比较也在诸如专家在每个椎体上识别的解剖标志等低级原语的定位上产生了良好的准确性。本文报道的实验表明,与每种评估病例的手动技术相比,所提出的方法在双平面视图的一组标志上提供了更好的匹配精度,并且其精度与从磁共振图像生成的三维模型相当,因此适用于脊柱畸形的常规三维临床评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验