Suppr超能文献

利用来自低质量多序列比对的进化信息改进蛋白质-蛋白质相互作用预测。

Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

作者信息

Várnai Csilla, Burkoff Nikolas S, Wild David L

机构信息

Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom.

出版信息

PLoS One. 2017 Feb 6;12(2):e0169356. doi: 10.1371/journal.pone.0169356. eCollection 2017.

Abstract

Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

摘要

存储在多序列比对(MSA)中的进化信息已被用于识别蛋白质复合物的相互作用界面,方法是测量界面上氨基酸残基的共保守性或共突变性。最近,已经开发出了与最大熵相关的相关突变度量(CMM),如直接信息,用于解耦直接相互作用和间接相互作用,以识别跨蛋白质复合物界面相互作用的残基对。这些研究主要集中在精心挑选的具有大量高质量MSA的蛋白质复合物上。在这项工作中,我们使用一组79个分子内蛋白质复合物,研究了具有更典型的少于400个序列的MSA的蛋白质复合物。我们在残基水平上使用基于最大熵的CMM,开发了一种界面水平的CMM分数,用于对接诱饵的重新排序。我们证明,当结合界面残基数量、基于知识的势和单个氨基酸位点的变异性分数时,我们的界面水平CMM分数与互补迹线分数(一种基于进化信息测量共保守性的分数)相比具有优势。我们还证明,由于MSA中的共突变和共互补性包含正交信息,通过将CMM的共突变信息与互补迹线分数的共保守信息相结合,可以实现使用进化信息的最佳预测性能,对于41%的数据集,将接近天然结构预测为最佳预测。所提出的方法不限于小的MSA,并且可能也会改善具有大量高质量MSA的复合物的界面预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db77/5293240/93a8c77d855f/pone.0169356.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验