Suppr超能文献

药物不良反应的归因:医院中的因果关系评估

Imputation of adverse drug reactions: Causality assessment in hospitals.

作者信息

Varallo Fabiana Rossi, Planeta Cleopatra S, Herdeiro Maria Teresa, Mastroianni Patricia de Carvalho

机构信息

São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.

CAPES Foundation, Ministry of Education of Brazil, Brasília-DF, Brazil.

出版信息

PLoS One. 2017 Feb 6;12(2):e0171470. doi: 10.1371/journal.pone.0171470. eCollection 2017.

Abstract

BACKGROUND & OBJECTIVES: Different algorithms have been developed to standardize the causality assessment of adverse drug reactions (ADR). Although most share common characteristics, the results of the causality assessment are variable depending on the algorithm used. Therefore, using 10 different algorithms, the study aimed to compare inter-rater and multi-rater agreement for ADR causality assessment and identify the most consistent to hospitals.

METHODS

Using ten causality algorithms, four judges independently assessed the first 44 cases of ADRs reported during the first year of implementation of a risk management service in a medium complexity hospital in the state of Sao Paulo (Brazil). Owing to variations in the terminology used for causality, the equivalent imputation terms were grouped into four categories: definite, probable, possible and unlikely. Inter-rater and multi-rater agreement analysis was performed by calculating the Cohen´s and Light´s kappa coefficients, respectively.

RESULTS

None of the algorithms showed 100% reproducibility in the causal imputation. Fair inter-rater and multi-rater agreement was found. Emanuele (1984) and WHO-UMC (2010) algorithms showed a fair rate of agreement between the judges (k = 0.36).

INTERPRETATION & CONCLUSIONS: Although the ADR causality assessment algorithms were poorly reproducible, our data suggest that WHO-UMC algorithm is the most consistent for imputation in hospitals, since it allows evaluating the quality of the report. However, to improve the ability of assessing the causality using algorithms, it is necessary to include criteria for the evaluation of drug-related problems, which may be related to confounding variables that underestimate the causal association.

摘要

背景与目的

已开发出不同算法以规范药物不良反应(ADR)因果关系评估。尽管大多数算法具有共同特征,但因果关系评估结果会因所使用的算法而异。因此,本研究使用10种不同算法,旨在比较ADR因果关系评估中的评分者间和多评分者一致性,并确定在医院中最一致的算法。

方法

使用十种因果关系算法,四位评判者独立评估了巴西圣保罗州一家中等复杂程度医院实施风险管理服务的第一年期间报告的前44例ADR。由于因果关系所用术语存在差异,等效归因术语被分为四类:肯定、很可能、可能和不太可能。分别通过计算科恩(Cohen)和莱特(Light)卡帕系数进行评分者间和多评分者一致性分析。

结果

在因果归因中,没有一种算法显示出100%的可重复性。发现评分者间和多评分者一致性一般。埃马努埃莱(1984年)和世界卫生组织药物不良反应因果关系评估协作组(2010年)算法在评判者之间显示出一般的一致性水平(κ = 0.36)。

解读与结论

尽管ADR因果关系评估算法的可重复性较差,但我们的数据表明,世界卫生组织药物不良反应因果关系评估协作组算法在医院归因中最一致,因为它允许评估报告质量。然而,为提高使用算法评估因果关系的能力,有必要纳入药物相关问题的评估标准,这可能与低估因果关联的混杂变量有关。

相似文献

1
Imputation of adverse drug reactions: Causality assessment in hospitals.
PLoS One. 2017 Feb 6;12(2):e0171470. doi: 10.1371/journal.pone.0171470. eCollection 2017.
2
Inter-rater agreement between WHO- Uppsala Monitoring Centre system and Naranjo algorithm for causality assessment of adverse drug reactions.
J Pharmacol Toxicol Methods. 2024 May-Jun;127:107514. doi: 10.1016/j.vascn.2024.107514. Epub 2024 May 18.
3
Comparison of WHO-UMC and Naranjo Scales for Causality Assessment of Reported Adverse Drug Reactions.
J Patient Saf. 2024 Jun 1;20(4):236-239. doi: 10.1097/PTS.0000000000001213. Epub 2024 Feb 12.
4
A tailor-made approach for causality assessment for ADR reports on drugs and vaccines.
Pharmacoepidemiol Drug Saf. 2019 Apr;28(4):544-550. doi: 10.1002/pds.4637. Epub 2018 Aug 30.
7
Comparison of different methods for causality assessment of adverse drug reactions.
Int J Clin Pharm. 2018 Aug;40(4):903-910. doi: 10.1007/s11096-018-0694-9. Epub 2018 Jul 26.
8
Causality assessment of adverse drug reactions in neonates: a comparative study between Naranjo's algorithm and Du's tool.
Int J Clin Pharm. 2023 Aug;45(4):1007-1013. doi: 10.1007/s11096-023-01595-9. Epub 2023 May 22.
9
A quantitative approach of using genetic algorithm in designing a probability scoring system of an adverse drug reaction assessment system.
Int J Med Inform. 2008 Jun;77(6):421-30. doi: 10.1016/j.ijmedinf.2007.08.010. Epub 2007 Oct 24.

引用本文的文献

1
Age-stratified pharmacovigilance of azithromycin: a multimethod signal detection analysis in the FAERS database.
J Pharm Policy Pract. 2025 Jul 8;18(1):2525356. doi: 10.1080/20523211.2025.2525356. eCollection 2025.
2
Attribution of causality in Stevens-Johnson syndrome/toxic epidermal necrolysis.
Ocul Surf. 2025 Jun 18;38:104-112. doi: 10.1016/j.jtos.2025.06.004.
4
Drug-Related Glomerular Phenotypes: A Global Pharmacovigilance Perspective.
J Clin Med. 2024 Aug 18;13(16):4869. doi: 10.3390/jcm13164869.
8
Leech Application-related Upper Gastrointestinal Bleeding: A Case Report.
Bull Emerg Trauma. 2023;11(1):47-50. doi: 10.30476/BEAT.2023.97246.1403.
9
Effectiveness of Antiseizure Medication Triple Therapy in Patients With Glioma With Refractory Epilepsy: An Observational Cohort Study.
Neurology. 2023 Apr 4;100(14):e1488-e1496. doi: 10.1212/WNL.0000000000206852. Epub 2023 Feb 8.
10
Adverse drug event detection using natural language processing: A scoping review of supervised learning methods.
PLoS One. 2023 Jan 3;18(1):e0279842. doi: 10.1371/journal.pone.0279842. eCollection 2023.

本文引用的文献

2
Dilemmas of the causality assessment tools in the diagnosis of adverse drug reactions.
Saudi Pharm J. 2016 Jul;24(4):485-93. doi: 10.1016/j.jsps.2015.01.010. Epub 2015 Jan 10.
3
Adverse drug reactions in hospitalized cardiac patients: characteristics and risk factors.
Vojnosanit Pregl. 2015 Nov;72(11):975-81. doi: 10.2298/vsp140710104m.
4
Future Proofing Adverse Event Monitoring.
Drug Saf. 2015 Oct;38(10):847-8. doi: 10.1007/s40264-015-0342-4.
5
Challenges in managing HIV in people who use drugs.
Curr Opin Infect Dis. 2015 Feb;28(1):10-6. doi: 10.1097/QCO.0000000000000125.
7
Medication beliefs, treatment complexity, and non-adherence to different drug classes in patients with type 2 diabetes.
J Psychosom Res. 2014 Feb;76(2):134-8. doi: 10.1016/j.jpsychores.2013.11.003. Epub 2013 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验