Suppr超能文献

事件参与动态的关联性质:一种网络理论方法。

Associative nature of event participation dynamics: A network theory approach.

作者信息

Smiljanić Jelena, Mitrović Dankulov Marija

机构信息

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.

School of Electrical Engineering, University of Belgrade, P.O. Box 35-54, 11120 Belgrade, Serbia.

出版信息

PLoS One. 2017 Feb 6;12(2):e0171565. doi: 10.1371/journal.pone.0171565. eCollection 2017.

Abstract

The affiliation with various social groups can be a critical factor when it comes to quality of life of each individual, making such groups an essential element of every society. The group dynamics, longevity and effectiveness strongly depend on group's ability to attract new members and keep them engaged in group activities. It was shown that high heterogeneity of scientist's engagement in conference activities of the specific scientific community depends on the balance between the numbers of previous attendances and non-attendances and is directly related to scientist's association with that community. Here we show that the same holds for leisure groups of the Meetup website and further quantify individual members' association with the group. We examine how structure of personal social networks is evolving with the event attendance. Our results show that member's increasing engagement in the group activities is primarily associated with the strengthening of already existing ties and increase in the bonding social capital. We also show that Meetup social networks mostly grow trough big events, while small events contribute to the groups cohesiveness.

摘要

与各种社会群体的联系在涉及到每个人的生活质量时可能是一个关键因素,这使得这些群体成为每个社会的重要组成部分。群体动态、持久性和有效性在很大程度上取决于群体吸引新成员并使他们参与群体活动的能力。研究表明,科学家参与特定科学社区会议活动的高度异质性取决于以前参会和未参会次数之间的平衡,并且与科学家与该社区的关联直接相关。在这里,我们表明Meetup网站的休闲群体也是如此,并进一步量化个体成员与群体的关联。我们研究个人社交网络的结构如何随着活动参与情况而演变。我们的结果表明,成员对群体活动参与度的提高主要与现有联系的加强以及结合型社会资本的增加有关。我们还表明,Meetup社交网络大多通过大型活动得以发展,而小型活动则有助于群体的凝聚力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/5293197/bbe014acaa91/pone.0171565.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验