Suppr超能文献

显著度感知的视频对象分割。

Saliency-Aware Video Object Segmentation.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Jan;40(1):20-33. doi: 10.1109/TPAMI.2017.2662005. Epub 2017 Jan 31.

Abstract

Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and temporally consistent saliency measurement of superpixels as a prior for pixel-wise labeling. Using undirected intra-frame and inter-frame graphs constructed from spatiotemporal edges or appearance and motion, and a skeleton abstraction step to further enhance saliency estimates, our method formulates the pixel-wise segmentation task as an energy minimization problem on a function that consists of unary terms of global foreground and background models, dynamic location models, and pairwise terms of label smoothness potentials. We perform extensive quantitative and qualitative experiments on benchmark datasets. Our method achieves superior performance in comparison to the current state-of-the-art in terms of accuracy and speed.

摘要

视频显著度旨在估计序列中的单个主导对象,为无监督视频对象分割提供了强有力的对象级线索。在本文中,我们提出了一种基于测地线距离的技术,该技术可对超像素进行可靠且时间一致的显著度测量,作为像素级标记的先验。使用从时空边缘或外观和运动构建的无向帧内和帧间图,以及进一步增强显著度估计的骨架抽象步骤,我们的方法将像素级分割任务表述为能量最小化问题,该问题的函数由全局前景和背景模型、动态位置模型的一元项以及标签平滑势的二元项组成。我们在基准数据集上进行了广泛的定量和定性实验。与当前最先进的方法相比,我们的方法在准确性和速度方面都具有优越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验