Xu Tao, Jiang Jingyao, Cai Lei, Chai Haojie, Ma Hanjun
School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang, 453003, China.
School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Sci Rep. 2025 Jan 2;15(1):397. doi: 10.1038/s41598-024-84680-x.
The salient object detection task based on deep learning has made significant advances. However, the existing methods struggle to capture long-range dependencies and edge information in complex images, which hinders precise prediction of salient objects. To this end, we propose a salient object detection method with non-local feature enhancement and edge reconstruction. Firstly, we adopt self-attention mechanisms to capture long-range dependencies. The non-local feature enhancement module uses non-local operation and graph convolution to model and reason the region-wise relations, which enables to capture high-order semantic information. Secondly, we design an edge reconstruction module to capture essential edge information. It aggregates various image details from different branches to better capture and enhance edge information, thereby generating saliency maps with more exact edges. Extensive experiments on six widely used benchmarks show that the proposed method achieves competitive results, with an average of Structure-Measure and Enhanced-alignment Measure values of 0.890 and 0.931, respectively.
基于深度学习的显著目标检测任务已经取得了重大进展。然而,现有方法在复杂图像中难以捕捉长距离依赖关系和边缘信息,这阻碍了对显著目标的精确预测。为此,我们提出了一种具有非局部特征增强和边缘重建的显著目标检测方法。首先,我们采用自注意力机制来捕捉长距离依赖关系。非局部特征增强模块使用非局部操作和图卷积对区域间关系进行建模和推理,从而能够捕捉高阶语义信息。其次,我们设计了一个边缘重建模块来捕捉基本边缘信息。它从不同分支聚合各种图像细节,以更好地捕捉和增强边缘信息,从而生成具有更精确边缘的显著性图。在六个广泛使用的基准上进行的大量实验表明,所提出的方法取得了具有竞争力的结果,结构度量和增强对齐度量值的平均值分别为0.890和0.931。