Suppr超能文献

重组纤维蛋白原揭示了 α 链和 γ 链交联及分子异质性在纤维蛋白凝块应变硬化中的差异作用。

Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.

机构信息

Department of Systems Biophysics, AMOLF, Amsterdam, the Netherlands.

ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.

出版信息

J Thromb Haemost. 2017 May;15(5):938-949. doi: 10.1111/jth.13650. Epub 2017 Mar 6.

Abstract

UNLABELLED

Essentials Fibrinogen circulates in human plasma as a complex mixture of heterogeneous molecular variants. We measured strain-stiffening of recombinantly produced fibrinogen upon clotting. Factor XIII and molecular heterogeneity alter clot elasticity at the protofibril and fiber level. This highlights the hitherto unknown role of molecular composition in fibrin clot mechanics.

SUMMARY

Background Fibrin plays a crucial role in haemostasis and wound healing by forming strain-stiffening fibrous networks that reinforce blood clots. The molecular origin of fibrin's strain-stiffening behavior remains poorly understood, primarily because plasma fibrinogen is a complex mixture of heterogeneous molecular variants and is often contaminated by plasma factors that affect clot properties. Objectives and methods To facilitate mechanistic dissection of fibrin nonlinear elasticity, we produced a homogeneous recombinant fibrinogen corresponding to the main variant in human plasma, termed rFib610. We characterized the structure of rFib610 clots using turbidimetry, microscopy and X-ray scattering. We used rheology to measure the strain-stiffening behavior of the clots and determined the fiber properties by modeling the clots as semi-flexible polymer networks. Results We show that addition of FXIII to rFib610 clots causes a dose-dependent stiffness increase at small deformations and renders the strain-stiffening response reversible. We find that γ-chain cross-linking contributes to clot elasticity by changing the force-extension behavior of the protofibrils, whereas α-chain cross-linking stiffens the fibers, as a consequence of tighter coupling between the constituent protofibrils. Interestingly, rFib610 protofibrils have a 25% larger bending rigidity than plasma-purified fibrin protofibrils and a delayed strain-stiffening, indicating that molecular heterogeneity influences clot mechanics at the protofibril scale. Conclusions Fibrinogen molecular heterogeneity and FXIII affect the mechanical function of fibrin clots by altering the nonlinear viscoelastic properties at the protofibril and fiber scale. This work provides a starting point to investigate the role of molecular heterogeneity of plasma fibrinogen in fibrin clot mechanics and haemostasis.

摘要

未加标签

纤维蛋白原在人血浆中循环,作为异质分子变体的复杂混合物。我们测量了重组产生的纤维蛋白原在凝结时的应变硬化。因子 XIII 和分子异质性在原纤维和纤维水平改变纤维蛋白凝胶的弹性。这突出了分子组成在纤维蛋白凝块力学中的未知作用。

摘要

背景纤维蛋白通过形成应变硬化的纤维网络在止血和伤口愈合中起着至关重要的作用,这些纤维网络增强了血栓的强度。纤维蛋白的应变硬化行为的分子起源仍知之甚少,主要是因为血浆纤维蛋白原是异质分子变体的复杂混合物,并且经常受到影响血栓特性的血浆因子的污染。

目的和方法为了促进纤维蛋白非线性弹性的机制分析,我们生产了一种与人血浆中主要变体相对应的均质重组纤维蛋白原,称为 rFib610。我们使用浊度法、显微镜和 X 射线散射来描述 rFib610 凝块的结构。我们使用流变学来测量凝块的应变硬化行为,并通过将凝块建模为半柔性聚合物网络来确定纤维的特性。

结果我们表明,FXIII 的添加会导致 rFib610 凝块在小变形时出现剂量依赖性的刚度增加,并使应变硬化反应具有可逆性。我们发现γ链交联通过改变原纤维的力-伸长行为对凝块弹性有贡献,而α链交联通过增加组成原纤维之间的耦合来增加纤维的刚度。有趣的是,rFib610 原纤维的弯曲刚性比血浆纯化的纤维原纤维大 25%,应变硬化延迟,表明分子异质性在原纤维尺度上影响凝块力学。

结论纤维蛋白原分子异质性和 FXIII 通过改变原纤维和纤维尺度的非线性粘弹性特性来影响纤维蛋白凝块的机械功能。这项工作为研究血浆纤维蛋白原的分子异质性在纤维蛋白凝块力学和止血中的作用提供了一个起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验